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DISSERTATION ABSTRACT 

A SIMULATED ANNEALING APPROACH FOR THE COMPOSITE FACILITY 

LOCATION AND RESOURCE ALLOCATION PROBLEM: A STUDY OF 

STRATEGIC POSITIONING OF US AIR FORCE MUNITIONS 

John E. Bell 

Doctor of Philosophy, Aiigust 4,2003 
(M.S., Air Force Institute of Technology, 1998) 

(B.S., U.S Air Force Academy, 1990) 

156 Typed Pages 

Directed by Patrick R. McMullen 

The US Air Force faces the difBcult decision of where to strategically pre- 

position munitions stocks in preparation for a variety of possible future wartime 

scenarios. This problem includes aspects of both the capacitated facility location 

problem and the resource allocation problem. The problem addressed is considered 

multi-objective in nature and cost minimization is balanced against minimizing the 

coverage distances that munitions must be transported to meet demands. 

Typical solutions to the facility location problem and resource allocation problem 

do not take into account the constraints of the logistics enviroimient. Therefore, this 

study incorporates transportation and facility costs, and uses actual geographic distances 

with adjustments made for available modes of transportation. Feasible solutions to the 

composite facility location and resource allocation problem are generated iising a 
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simulated annealing algorithm that explores both inventory transfers and location 

transfers during the course of the search. Simulated annealing is a meta-heuristic 

technique analogous to the physical annealing of solids and has been successfully used in 

many operations research problems, but has not been applied to a problem of \^ere to 

position strategic inventory. 

The study uses an experimental design which tests the ability of the algorithm to 

provide improved solutions to the problem when usmg different search parameter values. 

Different inventory transfer sizes are used in the search in order to analyze Ac effects of 

repositioning inventory in larger packages than the typical transfer size of one unit. In 

addition, flie search algorithm periodically redirects tihte search based on the best coverage 

solution found after a number of iterations. How often to accomplish this redirection is 

also an experimental factor of the study. 

The results of the study indicate that munitions inventories can be pre-positioned 

to simultaneously improve both objectives of the problem in comparison to the existing 

initial solution. In addition, it is shown that the cost and coverage values achieved by the 

model depend on the configurd^tion and size of the problem being solved. Also, the 

quality of the solutions is dependent on the combination of transfer size and reset 

frequency used by the algorithm. Improvement in the quality of solutions is evident 

when using the largest transfer size, and the most improved solutions are found when the 

transfer size is combined with the largest reset frequency. The results of the study also 

provide a means for analyzing which warehouse locations should be opened from the set 

of potential locations and what inventories quantities should be stocked at each location. 
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Introduction 

Purpose 

The US Air Force faces a problem deciding where to locate munitions storage 

facilities and inventories in order to prepare for possible future wars. This Munitions 

Pre-Positioning problem has several possible objectives such as minimizing cost, 

maximizing demand coverage, or minimizing response time. This research develops a 

model to provide answers for how to best preposition US Air Force munitions inventories 

needed for future conflicts for a variety of demand scenarios. This model is a 

combination facility location model and inventory allocation model which is aimed at 

simultaneously determining where to locate facilities and how to position inventory 

quantities. It is the intent of the research to identify solutions that identify improved 

storage locations and munitions inventories stocking locations while taking into 

consideration the logistics constraints of potential future demands. The overall purpose 

of the research is to provide managers and strategic planners with an improved method 

for making decisions about facility location and inventory positioning problems. 

Facility Location Problems 

Mathematicians and other scientists have studied the optimal placement of 

facilities since at the 19* century. However, one of the most well-known and widely 

studied location problems was formulated in the early part of the 20* century by Alfred 



Weber in an attempt to find the most cost-effective location for production based on the 

existing location of raw materials and customer demands. This problem, known as the 

"Weber Problem", attempts to find a single location that minimizes the distances from the 

selected facility site to the supply and demand locations. An extension of this problem, 

the p-median problem also seeks to find the optimal location for a fixed number of 

facilities (p) that minimizes the total distance to a set of selected locations. Models for 

solving this problem later became known as Location-Allocation models since they must 

simultaneously determine the location of several supply facilities, and determine how to 

allocate the demand locations to the supply locations.  An extension of the p-median 

problem, the Facility Location Problem (Efroymson and Ray,1966; Spielberg, 1969; and 

others), seeks to minimize the total costs of a system by including the fixed and variable 

costs associated with locating and operating a distribution center instead of considering 

only the transportation costs related to distance. The FLP can be formulated with either 

uncapacitated or capacitated facihty locations (UFLP/CFLP) (Daskin, 1995). Unlike the 

p-median problem, the Facility Location Problem (FLP) determines the number of supply 

locations (p) to select and provides them as a model output. Therefore, the number of 

locations (p) is produced from within the model and is said to be "endogenous". 

Endogenous selection allows the model to either close or open potential facilities in order 

to find the least cost solutions, instead of restricting the number of supply locations to an 

exogenous number (p) determined outside the model by the user. In addition, the FLP 

can be classified by whether or not a demand point may be supplied or serviced by more 

than one location. In the single-source version of the FLP, each demand is supplied from 



one supply location and in the less frequent multiple-source version of the problem each 

demand may be supplied by more than one site. 

Many other variations of the p-median problem and FLP have been formulated 

including the minimax problem which uses an objective function that minimizes the 

maximum distance of any demand point from the supply locations. In addition, covering 

problems have been developed that use a maximum distance constraint between the 

supply and demand locations. The two most cited covering problems are the Location Set 

Covering Problem (LSCP) (Toregas and Revelle, 1972) and the Maximum Location 

Covering Problem (MLCP)(Church and ReVelle, 1974). The LSCP attempts to minimize 

the number of facilities to cover a given demand and the MLCP aims to maximize the 

quantity of demand covered with a limited number of supply locations. A great deal of 

the research for both types of covering problems has been conducted for locating 

emergency service facilities and resources for fire departments and hospitals. 

During the past forty years, much effort has been devoted to solving the p-median 

location allocation problem and the facility location problem. In addition, many added 

features have been included in location models including multiple objectives, multiple 

facility types, multiple time periods and consumer characteristics. Researchers have also 

studied several methods to more accurately determine the distances used to calculate 

feasible location decisions and have studied the errors that can result from aggregating 

demand data in location models. In addition, dynamic location allocation models have 

been formulated that take into consideration the effects of multiple time periods and 

stochastic supply and demand quantities resulting from uncertainty about the future. One 



enhancement to location-allocation models has been the recognition that location 

decisions may be tied to equally important resource allocation decisions. Decision 

makers may not only be concerned with locating a set of facilities, but might also need to 

solve the underlying problem of how much capacity or inventory to locate at a facility 

once it is opened. 

Resource Allocation Problems 

The resource allocation problem is concerned primarily with allocating a scarce 

set of resources among competing activities. This problem has been studied primarily in 

reference to production planning and scheduling, as well as the placement of emergency 

services and strategic inventories at different locations. These problems are usually 

modeled as either maximal covering problems that attempt to serve all demand points or 

as minimax problems that attempt to minimize the maximum time or cost of meeting any 

demand.   Resovirce allocation problems may be concerned with determining the amount 

of capacity to place at more than one location. For example, a manufacturer may have 

several manufacturing locations, but may only have a limited amount of specialized 

equipment or skilled labor to locate at these facilities. Resource allocation might also 

include the placement of inventories at storage locations in anticipation of future demand. 

For public organizations, the placement of strategic inventories is sometimes necessary to 

protect against the high costs of a stock-out. This is especially important when demand is 

highly uncertain or unknown. Resource allocation problems may also take a multi-item 

approach where different characteristics such as cost, size or value may be associated 



with dissimilar resources. For example, a problem for the placement of strategic 

inventories might include a multi-item aspect to the problem where different values and 

costs are associated with the various types of inventories allocated to facility locations. 

Research on resource allocation (as it applies to inventory) has focused on the advantages 

of pooling inventory at centralized locations in order to meet varying customer demands 

and the inherent tradeoff between covering customer demand in a timely manner and 

minimizing overall system costs. 

Combined Location and Resource Allocation Problems 

A limited amount of research has been conducted on problems that combine 

location analysis with resource allocation; perhaps because formulating and solving these 

problems using linear or mixed integer progranmiing is difficult due to the combinatorial 

nature of the problem. Therefore, the amount of research for such combined problems 

has been limited. Research on distribution system design has occasionally taken into 

account the costs or constraints associated with maintaining inventory levels at different 

locations. In addition, the placement of capacity resources such as vehicles or production 

equipment has been considered in previous location research. However, much of the 

research that considers combined location and resource allocation problems has been 

limited to uncapacitated location or single-item problems, and usually it does not take 

into account the difficulty associated with multi-item or even multi-objective problems. 

In addition, much of this work has not taken into account many real world logistics 



constraints and has not included transportation characteristics needed to more accurately 

model the actual movement of material from supply to demand locations. 

Transportation Considerations 

Distances used for solving location models are typically calculated using simple 

mathematical techniques such as Euclidean or rectilinear computations. Although using 

such methods in location science reduces the difficulty of mathematical computations, it 

does not always capture the true nature and cost of transporting material between supply 

and demand locations in an actual transportation network. One improvement to a 

location model can be made by using actual geographic distances as calculated using the 

actual longitude and latitude coordinates for locations included in the model. Even then 

however, equal distance does not always represent equal time or cost in a mathematical 

model. For example, even though two supply locations may be equidistant from a 

demand location using a straight line distance computation, they may not represent an 

equal choice for serving the demand if they do not both possess equal transportation 

characteristics. The mode of transportation (rail, truck, air, or sea) between a supply 

location and the demand location can have a significant impact on the distances traveled 

and the eventual costs of supplying the demand. Such differences can make one supply 

location superior in its ability to meet the demand even though no difference was evident 

in the straight line distance computations. Therefore, the ability to model aspects of the 

transportation network such as different modes of transportation from supply to demand 

locations becomes a necessary aspect of the combined location-resource allocation 



problem when the decision-maker needs to more accurately represent transportation and 

distances in a geographic region. 

Strategic Positioning of Resources and Materials 

Facility location problems continue to be an important part of strategic planning 

and decision making for logistics managers today. This is especially true for the 

positioning of facilities needed to store emergency response materials for war, natural 

disaster, or fire response. These decisions are characterized by uncertainty in demand, 

infrequent or low demand, short lead-times for response, and a high cost of not meeting 

demand. Due to these characteristics, such facility location problems must consider the 

strategic positioning of inventory or other resources among the facilities that are being 

positioned. The majority of the research in this area has been related to the problem of 

where to locate fire stations and how to position emergency response vehicles. However, 

other government and public service organizations face a similar problem for positioning 

consumable inventories of supplies needed for disaster or war response. Organization 

such as the Red Cross, the Federal Emergency Management Agency (FEMA), and the 

US military encounter the problem of simultaneously determining where to build 

facilities and determining how much inventory to pre-position at each location. 

Munitions Pre-Positioning Problem 

The United States Air Force must determine where to position war readiness 

material (WRM) to be used in future conflicts. This difficult problem is especially 



troublesome for dangerous and cumbersome resources such as air-to-ground munitions 

used by attack aircraft in an air war. The nature of the problem has several interesting 

aspects. First, since there are many potential conflicts and operating plans, the lists of 

required WRM munitions to fulfill all potential operating plans far exceeds the actual 

stocks of munitions available for pre-positioning. Any set of demands used to plan the 

positioning of munitions must take into account possible Major Theater Wars as directed 

by the National Military Strategy and must also be flexible enough to response to 

unexpected small scale contingencies and conflicts that typically flare up around the 

world. One portion of the problem may therefore be thought of as a Resource Allocation 

problem where a limited amount of resources must be strategically allocated among a 

group of storage facilities to respond to a varying set of demand situations.   Second, 

determining the location of inventory stocking locations and how to allocate demand to 

each location is an additional challenge. This second challenge is a location-allocation 

problem where the choice of location is restricted to a predetermined set of potential 

locations. These sites are typically at or near transportation hubs such as airfields, ports, 

or rail yards belonging to US allies and are constrained by the sites ability to safely store 

a fixed number of explosives as well as many other political considerations. In addition, 

this aspect of the problem may be constrained by the lack of funding to build additional 

storage facilities and is tied to a set of initial operating locations which were built during 

the Cold War. All of the potential and initial storage sites may additionally have unique 

fixed and variable costs for being opened, closed and operated depending on their 

location. Third, the global nature of military positioning must take into consideration the 



diverse (and sometimes hostile) nature of the transportation networks around the world. 

In different parts of the world, the movement of munitions is: constrained to particular 

routes, utilizes different modes of transportation, and may transit several locations before 

reaching its final destination. Overall, an optimal solution to the Munitions 

Prepositioning problem should identify the best set of storage locations with the best mix 

of munitions inventories that considers transportation and other logistics constraints in 

satisfying a set of potential demands for future conflicts. 

Multiple-Sourcing. During a conflict, it is natural to assume that munitions 

currently positioned at a combat location are always used first in meeting the demands of 

a conflict. However, if the demand is larger than supply at the current combat location 

then munitions will have to be shipped from other locations to fill the unmet demand. 

This logic establishes that the Munitions Pre-positioning model should use multi-sourcing 

and establishes a heuristic rule that shortages in demand quantities should be sourced in 

order from the nearest supply location to the most distant one. This rule is used in this 

research to first try to satisfy demand from quantities already stored at a demand location 

and then proceeds to the next nearest facility in an iterative process until all of the 

demand for the conflict is met. Use of this rule also implies*^h^that no shortages are 

allowed. This is a reasonable assumption since in wartime Air Force operators are rarely 

satisfied with the concept of not supplying a quantity of munitions for a combat mission, 

and munitions will be transported in from the farthest geographic points on the globe to 

meet a combat requirement if necessary. However, a limitation to this model is the 

assumption that no conflict will exceed the available global quantities. This seems 
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reasonable since by the time all global quantities for a particular weapon type are 

consumed, the Air Force will have either started a new production hne for the weapon or 

will have approved a reasonable substitution of an item that can closely match the 

requirements of the weapon whose inventory has been depleted. 

Since required munitions may be shipped to the wartime demand location from 

many locations, the calculation of coverage values is not as straight forward as seen in 

previous research. In order to calculate the coverage objective in this study, an improved 

measure, the maximum average coverage value is created to take into account the fact 

that munitions may be multiple sourced and arriving at a demand location from several 

supply locations. This value is simply the maximum average distance that a group of 

munitions for an individual weapon type are required to travel to their particular demand 

location. The calculation of the maximum average cover value is described in detail in 

the Methodology chapter. 

Cost Considerations. The global nature of the Munitions Pre-Positioning 

problem lends itself to using a variety of costs for faciUties and transportation. For 

example, any model of the problem must acknowledge opening costs for any new 

munitions storage locations based on the amount of munitions to be stored at the location 

and the resulting number of storage warehouses that must be constructed. Similarly, 

closing costs of a munitions site must be taken into account to accurately reflect the 

decision to abandon a current location. Additionally, since the Munitions Pre-Positioning 

Problem covers a number of geographic locations including dozens of different foreign 

countries and even different continents, the costs for transporting materials depends 
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greatly on the region of the world and the available transportation modes. The costs of 

shipments being considered in the problem must be differentiated by both the mode of 

transportation and regional differences in transportation costs. This research uses the 

location and region of the shipping origin in order to determine total transportation costs 

for a specific shipment. 

Transportation Restrictions. The availability of transportation resources and 

the actual distances traveled from source locations to destination sites in an actual 

conflict can vary greatly depending on a number of wartime factors.   It is this variation 

that makes the use of straight-line distance computations inaccurate and misleading for a 

facility location model. The only mode of transportation that may arguably use straight- 

line distance is air transportation. Of course, this assumes that there are not any over- 

flight restrictions necessitating that neutral or enemy countries not be flown over. The 

use of straight-line distances actually implies the use of air cargo transportation which is 

a faulty assumption for the movement of mass quantities of heavy and hard to handle 

munitions. For example, during Operation Desert Storm only 26,000 short tons (8%) of 

the required 326,000 short tons of Air Force munitions were moved to Southeast Asia by 

airlift (AFMC, 1992). The remainder were all shipped to the conflict using surface 

transportation. Similar results were seen in the Kosovo conflict from February to June 

1999 when over 460 railcars, seven coaster ships, and 1042 transport trucks were used to 

ship over 9,000,000 lbs. net explosive weight of munitions to combat locations in 

Southern Europe (USAFE, 1999). The dominance of surface transportation modes in 

comparison to air transportation makes it necessary to adjust of distances used by models 
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to more realistically model actual distances traveled during a conflict. This research 

places a limit on the amount of munitions moved by air to approximately ten percent and 

in addition adjusts straight-line distance computations using a circuitry routing factor as 

recommended by Bramel and Simchi-Levi(1997). This adjustment to straight-line 

distances is used in order to simulate surface (road, rail and sea) transportation distances. 

The actual routing factors for air and surface transportation calculations are listed in the 

Methodology chapter. 

Conflict Size and Munitions Demand.  The location and size of conflicts is 

subject to a high level of uncertainty and the quantity of munitions demanded can vary 

greatly from one conflict to the next. Military planners must pre-position munitions 

inventories in preparation for a wide array of conflicts from small operations lasting only 

weeks to major wars lasting several months. National Military Strategy dictates that the 

US Air Force will be prepared to respond for the possibility of at least two overlapping 

Major Theater Wars (MTWs) defined in military planning documents and operational 

plans (QDR,2001). For example, a possible conflict in the Korean Peninsula or the 

Persian Gulf Region would most likely constitute a significant military effort, involve 

many nations and be classified as an MTW. Predetermined military operating plans for 

these MTWs identify possible munitions quantities and consumption rates in the event 

the MTW occurs. However, many conflicts entered into by the US military such as the 

conflicts in Kosovo and Afghanistan are not defined in any pre-developed operating plan. 

Therefore, munitions pre-positioning decisions must also take into account unpredicted 

conflicts commonly described by military strategists as Small Scale Contingencies (SSC). 
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Therefore, an additional aspect of the Munitions Pre-positioning problem is the wide 

range of possible conflicts and demand sizes that a robust pre-positioning of munitions 

must be able to service. This research tests the combined location and resource allocation 

model on a range of problems taking into account MTW, SSC and a mixture of possible 

conflict scenarios at locations around the globe. This approach is in line with current 

military strategy which stresses that the US military has not abandoned its previous 

commitments to the two MTW construct, but instead "is changing the concept altogether 

by planning for victory across the spectrum of possible conflict" (QDR,2001). The 

occurrence of past conflicts, demand data from previous Air Force research and current 

political conditions are all taken into consideration in order to provide a reasonable 

demand set for studying the munitions-pre-positioning problem. However, the problem 

sets are in no way meant to represent all possible conflict scenarios, nor are they meant to 

represent the US Air Force's forecast of future events. 

Multiple Objective Nature of the Problem 

Several different criteria may be used as the objective for solving location and 

resource allocation problems. One of the most common objectives for a location model is 

to minimize the total costs of the system. The costs included in such a model usually 

include the cost associated with opening or closing facilities, the cost of operating 

facilities and the cost of transporting inventory between demand and supply locations. 

However, cost is not always the most important or only objective for a decision maker 

when solving a location and resource allocation problem. Fulfilling demand may be an 
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equally important objective for an operation that is extremely sensitive to stock-outs. For 

a military or emergency response organization, covering all of the demand on the system 

may be critical to mission success for winning a war and can be tied to life or death 

situations similar to those faced by fire and police departments. In these situations, costs 

are not the only objective; however, they cannot be forgotten and must be weighed 

against the abiUty of the system to meet all demands. For such a problem, a multi- 

objective approach for the location-resource allocation problem is a logical technique for 

finding solutions that not only attain reasonable cost levels, but also insure high levels of 

demand coverage.   For analyzing the Munitions Pre-positioning problem in this research, 

these two competing objectives are necessary to ensure that on one hand the US military 

does not waste limited defense dollars appropriated by Congress, and on the other hand is 

able to provide overseas positioning necessary to quickly bring munitions to major 

combat operations. However, the multi-objective approach is difficult to solve and adds 

an additional level of complexity to the objective function of the problem. As the model 

tries to select new feasible solutions to improve the value of one objective, the value of 

the second objective may worsen and thereby undermine the improvement found in the 

first objective. Therefore, it is important to identify and analyze tradeoffs between the 

competing objectives. 

One method for analyzing solutions for a dual-objective model is to map an 

efficient frontier or Pareto Front to be able to visually analyze the model results in order 

to determine the relative tradeoff between the different objectives of the model. For 

example, plotting the feasible solutions that attain a minimal cost for different levels of 
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coverage actually presents the decision maker with a choice of feasible solutions instead 

of relying on a single optimal output of a model. This technique allows the researcher to 

analyze the sensitivity of the model to changes in a constraint or input variable and 

provides flexibility to the decision maker for making the final location and allocation 

decisions. Having this flexibility is especially important since it is almost impossible to 

model all of the real-world constraints for a problem and a single optimal solution created 

by a mathematical model may not be implemental due to physical or political constraints 

not captured in the model. 

Modern Search Heuristics 

Several methods have been used to solve location allocation and resource 

allocation problems. Linear programming. Mixed Integer Programming and Non-Linear 

Programming have each been used to solve location problems of limited size. However, 

finding an exact solution to combinatorial optimization problems becomes increasingly 

difficult and subsequently impossible as the size of the problem increases. Location 

problems such as the Weber problem, p-Median problem and their extensions are 

described as Non-Deterministic Polynomial Hard (NP-Hard) in that no known exact 

algorithm is available to solve such problems in every instance. Therefore, heuristic 

techniques are commonly used to solve large location problems and much of the classic 

work done to solve simple location problems has been done using local search heuristics. 

Unfortunately, these techniques do not necessarily provide a global optimal solution and 

the solution process can become trapped at a local minimum. Researchers have therefore 



16 

developed a group of global search heuristics such as Genetic Algorithms, Tabu Search, 

Neural Networks, Ant Colony Optimization and Simulated Annealing to improve the 

search of the feasible set of solutions with the intent to find a near optimal result for large 

combinatorial optimization problems. Each of these techniques has gained merit for 

solving optimization problems. However, this research focuses primarily on the use of 

Simulated Annealing as a tool for solving large location-resource allocation problems. 

The technique of Simulated Annealing has provided results for other similar location and 

resource allocation problems, has a well established ability to explore feasible solution 

spaces, and does require the computational difficulty required be several of the other 

search heuristics. Therefore, this technique offers itself as a natural choice for exploring 

solutions to a new problem such as the Munitions Pre-positioning Problem. 

Description of the Research 

The research uses simulated annealing to find near optimal solutions to the 

Munitions Pre-positioning Problem which simultaneously consider the objectives of least 

cost and maximum average coverage. In addition, the research considers the positioning 

of variety of munitions types, uses constraints on the physical capacity of storage 

warehouses and allows shipments to be sourced fi-om multiple shipping locations if 

necessary. The research takes into consideration realistic demands for US Air Force 

munitions based on possible Major Theater Wars and possible Small Scale 

Contingencies. The heuristic solutions generated by the research provide insight about 

the best location for current inventories and help evaluate the tradeoffs for re-positioning 
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inventory to new locations. In addition, the model considers the possible constraction 

and use of new munitions sites and evaluates the effect of modes of transportation on the 

location and inventory positioning decisions. A more detailed description of the research 

can be found in the methodology section of this dissertation. 

Intent of Research 

The purpose of this research is to provide managers and strategic planners with an 

improved method for simultaneously making decisions about facility location and 

inventory positioning problems. The objective of the method may be to minimize the 

cost of the system, provide maximum coverage of demand or a multi-objective 

combination of these two objectives. Some organizations which face this problem may be 

primarily concerned with minimizing costs, while others may be more concerned with 

meeting each demand in order to ensure mission accomplishment. However, it is not the 

intent of this research to dictate which strategy is best, but instead, it is to provide the 

decision maker with a flexible methodology to address specific location-resource 

allocation problems such as the Munitions Pre-positioning Problem. The methodology 

explores different search criteria, heuristics and model parameters in order to identify the 

best search techniques for a problem of this nature. In addition, it is hoped that decision 

makers will further begin to understand the tradeoffs inherent to selecting different 

solutions to the problem and be able to use the methodology to analyze different planning 

scenarios and demand sets in order to imderstand the robustness or vulnerabilities of any 

location and inventory positioning decision. 



Literature Review 

In order to understand the composite location-resource allocation problem, it is necessary 

to first review the relevant literature for a variety of facility location problems and 

resource allocation problems. 

Facility Location Problems 

Since location problems have been studied in great detail for many decades, it is 

not surprising and worth noting that several comprehensive reviews of the literature 

pertaining to location analysis are available. Aikens (1985), Brandeau and Chieu (1989), 

and others have written extensive reviews of the location Uterature and describe the 

various characteristics of the problems studied and optimization techniques used in the 

research. In addition, several texts describing location analysis problems and methods 

have been developed by Ghosh and Rushton (1987), Mirchandi and Francis (1990), 

Drezner (1995), Daskin (1995) and others. 

The Weber and P-Median Problems. Probably the most well-known location 

problem was formulated in the early part of the 20* century by German researcher, 

Alfred Weber. Weber, whose work was later translated into Enghsh, attempts to find the 

most efficient location for production between a group of raw materials and a set of 

demands (Friedrich, 1929). For many years, it was thought that this problem, the "Weber 
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Problem" could not be solved analytically (Ghosh and Rushton, 1987). For several 

decades, only limited success was achieved in solving small geometric problems 

containing three destination points and equal weighting of costs (the Steiner Problem). 

However, in the early 1960s, several researchers were able to develop solution methods 

to the Weber Problem using heuristic methods for larger problems and unequal 

weighting. 

One of the first successful attempts to find solutions to the Weber problem is 

presented by Kuhn and Kuenne (1962). They generalize the Weber problem to instances 

that contain more than three destination locations and unequal transportation costs. 

Using an iterative algorithm they are able to locate the most "efficient" supply point on a 

continuous plane for problems with as many as 24 destination points. Their algorithm 

uses a minimum sum of squares or center of gravity approach that maps one trial solution 

to the next until the change between iterations becomes negligible. They demonstrate 

this technique for locating a population center by using Euclidean coordinates for cities in 

Russia and using population data to weight the demands for each city. 

In their work, Kuehn and Hamburger (1963) employ heuristic methods to find 

near optimal solutions to the Weber problem as it applies to a large scale distribution 

system in the United States. The method consists of a two-stage heuristic with the 

objective of finding the minimum cost. The first stage starts with no warehouses and 

incrementally adds warehouses to the location that provides the largest cost reduction 

until no further cost reducing additions are available. Then the second stage employs a 

local search routine that provides further improvements to the solution found in Stage 
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One by either eliminating unnecessary warehouses or exchanging them with another 

possible location. In this manner, Kuehn and Hamburger were able to show how 

significant cost savings could be achieved in twelve sample problems that employ 

different initial manufacturing locations, and different cost structures. This work argues 

the merit of using heuristic methods to solve real world business problems due to their 

flexibility and ability to reduce solution time in order to solve large scale problems. 

For many years, the methods and sample problems provided by Kuehn and Hamburger 

have been used as a baseline of comparison for additional research for solving the Weber 

problem and related location problems. 

A next important step was accomplished by Cooper (1963) who formulated the 

"p-median problem" which seeks to find the optimal location for a fixed number of 

source locations, "p" that minimizes the cumulative distance to a set of demands 

destinations. Since there are multiple locations, this problem is a location-allocation 

problem where the allocation of demand destinations to sources must be simultaneously 

determined. Cooper shows the exact mathematical methods for allocating demand to 

possible source locations; however he shows that due to the combinatorial nature of the 

problem finding exact solutions to larger problems is restricted by computational ability 

and cost. Therefore, he develops an approximate heuristic method that iteratively seeks 

to find the least cost solution by considering all of the possible allocations for each 

combination of supply locations. This method however is restricted to only considering 

the fixed destination sites as possible supply locations and therefore will only find a near 

optimal solution. However, in a group of eight small sample problems Cooper is able to 
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show that the approximate method has the abiUty to find near optimal solutions. In 

fiirther research, Cooper (1964) analyzes three additional heuristic methods for solving 

the p-median problem and determines that a heuristic method that employs random 

selection of supply locations from the destination set is equally able to find good 

solutions to the p-median problem, but with much less computational time expended. 

The p-median problem was then extended to finding optimal locations on a 

discrete network instead of in continuous space. These discrete network p-median 

problems are also sometimes called site selection problems. Hakimi (1964) provides the 

mathematical methods for finding the median of a graph in order to find the best discrete 

location for a switching center in a communication network when the location is 

restricted to one of the nodes on the graph. In addition, Hakimi also provides a method 

for determining the absolute center of a graph in order to determine the location of a 

police station with the desired outcome of minimizing the maximum distance the police 

would have to travel in order to respond to an accident. An additional warehouse 

location model is formulated by Maranzana (1964) whose partitioning algorithm is used 

to find the location of several supply locations on a transportation network while 

considering transportation costs and the shortest transportation paths along the network. 

The heuristic algorithm used by Maranzana can not guarantee convergence on an optimal 

solution; however, the method was found to be quite successfijl in finding a near optimal 

solution when using different initial solutions in repeated application of the algorithm. 

Additional research by Tietz and Bart (1968) re-examines the network version of 

the p-median problem formulated by Hakimi and Maranzana, the selection of (p) 
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uncapacitated source locations from (n) destinations with equal demands and located on 

the nodes of a network. In their analysis, the researchers point out that the partition 

algorithm of Maranzana can at times be erratic and subject to high error variance. 

Therefore, they develop a new Vertex Substitution Algorithm which uses an iterative 

exchange process to select new source vertexes to improve the objective function and 

find a good approximation of the general median solution. In experimental experience, 

this substitution algorithm outperforms the partition algorithm. The Tietz and Bart 

algorithm provides a baseline for comparison for solution techniques to the general p- 

median problem on a graph. 

ReVelle and Swain (1970) provide a warehouse site selection model which can be 

considered a further advancement in the evolution of solutions for the p-median problem 

on a network. There work makes use of linear programming to find the bounds for 

optimally locating facilities on a road network. Their solutions are then attained by using 

a Branch and Bound technique to find the optimal integer solution. The technique is 

successfully applied by ReVelle and Swain to problems with up to thirty locations and six 

warehouse sites (p). Further work, using these techniques belongs to Kuenne and Soland 

(1972) who also use an exact Branch and Bound method to find solutions to small p- 

median problems. These techniques and other which attempt to use exact algorithms to 

solve the p-median problem are limited by the size of the problem that can be solved. 

This is due to the fact that the p-median problem on a network has been shown using 

complexity theory to be NP-Hard (Kariv and Hakimi, 1979). This condition means that 

the time to solve the problem grows exponentially with the number of sources (p) being 
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located. Therefore, the use of heuristic methods continues to be a necessary and 

acceptable method for finding solutions to the p-median problem and its many variations. 

Continued significant work for solutions to the P-Median Problem are presented 

by Khumawala (1973) who creates Delta and Omega heuristics to iteratively open and 

close facilities based on which potential location can most improve the objective function 

of a distance constrained p-median problem. In addition,, Hillsman and Rushton (1975) 

and Hillsman (1980) suggest additional heuristic algorithms for solving larger p-median 

problems in the many versions of their ALLOC computer program for solving p-median 

location problems including the Hillsman-Rushton algorithm and the Trade-Off 

algorithm. However, much of the more recent work for solving the p-median problem 

has used Lagrangian relaxation approaches as demonstrated by Daskin (1995). This 

method appears to consistently provide superior results in comparison to the earlier 

developed heuristic methods for small and medium sized problems. However, as the 

problem size grows the heuristic algorithms appear to consistently provide near optimal 

solutions close to the best value attained by Lagrangian relaxation, and they continue to 

offer the needed savings in time and computational difficulty required for larger 

problems. Further advancements in heuristic methods for the p-median problem 

including projection (Bongartz et al., 1994), Tabu Search (Brimberg and Mladenovic, 

1996) and Variable Neigborhood Search have been compared by Brimberg et al (2000) 

who have analyzed some of the largest problems to date. Brimberg concludes that, "no 

one method is best in all cases and that the variation of strategies is limitless in terms of 

shaking (global search), local search and parameter setting. However, Brimberg's results 
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indicate that relocation-based or interchange methods appear to be more efficient than 

other methods and Variable Neighborhood Search can effectively be used to obtain 

superior solutions. 

Continued research on the p-median problem in the last several decades has added 

considerably to the difficulty of the problem by including multiple conmiodities, 

dissimilar facility types, multiple objectives and many other variations to the original 

problem. One major change is the addition of cost data to the problem which thereby 

transforms the problem into a facility location problem with the objective of finding the 

location of an unspecified number of facilities that minimizes cost for the entire system. 

Uncapacitated and Capacitated Facility Location Problems (UFLP/CFLP). 

When the p-median model is adjusted to endogenously determine the number of locations 

by considering the fixed costs associated with opening a plant, the resulting problem is 

called the Facility Location Problem and can be formulated with either capacitated 

(CFLP) or uncapacitated locations (UFLP). One of the first instances of the UFLP is 

presented by Efroymson and Ray (1966) who formulate an integer progranmiing problem 

for their "Plant Location Problem" which minimizes total costs consisting of both the 

transportation costs between each plant and its customers, and the fixed costs associated 

with building each plant. They find solutions to the problem using Branch and Bound 

methods and constrain their solutions to the single-source case where each demand 

location can only be supplied from one plant. Their work provides simplifications to the 

Branch and Bound algorithm that reduce the number of branches that have to be 

considered, thereby reducing the time necessary to find solutions for problems with up to 
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fifty potential plant locations and two hundred customers. In continued work on the 

UFLP, Speilberg (1969) presents computational experience on a variety of plant location 

problems with different costs and concludes that algorithms that are adaptive or closely 
» 

matched to the problem data are the most effective for solving the plant location problem. 

He also considers the capacitated version of the problem and provides suggestions for 

solving such a problem. 

The first algorithms for solving the CFLP are published in the literature by Davis 

and Ray (1969) and Sa (1969). In addition, one of the first researchers to formulate and 

solve the capacitated version of the simple facility location problem as it applies to 

warehouse distribution systems is Elson (1972).   He finds successful solutions using a 

matrix generator program that finds optimal solutions to the mixed integer programming 

formulation of the problem. Later however, Akinc and Khumawala (1977) outline a 

more efficient solution method for the CFLP when they adapt the branch and bound 

methods of Khumawala to the problem. Their methods include developing hybrid node 

selection rules and testing of a variety of branch selection rules for finding improved 

solutions to the problem within a reasonable time (usually less than a minute). They are 

able to find solutions to twelve problem sets including problems originally developed by 

Kuehn and Hamburger (1963). These problems range in size from ten to twenty-five 

potential warehouse locations and twenty to fifty customer locations. In addition, their 

formulation of the CFLP does not necessarily restrict the model to the single-source case 

as more than warehouse may supply a portion of the demand for a particular customer. 

The work of Akinc and Khumawala is still considered some of the most important work 
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on the CFLP and is used today for comparison for new solution techniques for the 

problem. Additional work on the CFLP using branch and bound techniques is carried out 

by Neebe and Rau (83) and others. 

A majority of the original work on the CFLP is based on linear programming and 

branch and bound solution methods. However, other research uses Lagrangian 

Relaxation as a method for finding solutions to the CFLP. This technique is first applied 

by Geoffrion and McBride (1978) who show that Lagrangian relaxation is much faster in 

a set of test problems in comparison to a branch and bound method. The problems 

consist of up to twenty four potential supply locations and over one hundred customer 

locations. Additionally, Lagrangian techniques are again effectively applied by 

Klincewicz and Luss (86) who use a Lagrangian heuristic method to find relatively fast 

and efficient solutions to the problem. Using this technique, they relax the capacity 

constraint to the problem and determine a lower bound using a dual ascent algorithm on 

the uncapacitated version of the problem. Initial solutions for their Lagrangian heuristic 

are generated using a simple add heuristic and a post-processing heuristic is used to make 

final adjustments to customer allocations of the final solution. Klincewicz and Luss 

apply their Lagrangian heuristic to the test problems of Kuehn and Hamburger (1963) 

and compare the results to an Add Heuristic for solving the problem. The results show 

that that the Lagrangian method can satisfactorily be applied to solving the CFLP and is 

superior to the Add Heuristic algorithm.   Additional research on the applying Lagrangian 

relaxation to the CFLP is done by Pirkul (1987). This work provides improved methods 

for attaining the lower bounds for the problem and uses a heuristic method to find 
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generally superior results compared to those from previous research.   Pirkul's method is 

described by Bramel and Simchi-Levi (1997) who apply the technique to a set of single 

sourced CFLP with up to one hundred potential warehouse sites and one hundred retail 

locations. The average error for the solutions compared to the lower bound for the 

problems is less than 2% in all instances. 

Additional work on the CFLP occurs throughout the literature in the last decade, 

however, typically this work involves additional aspects of the original problem including 

multiple periods, multiple objectives or multiple items. Many of the problems described 

in the following sections are extensions of the CFLP or use the CFLP as a baseline to 

formulate more complicated problems. An overview of literature on distribution system 

design using the CFLP and associated algorithms is provided by Geoffrion and Powers 

(1995). Other extensions of the CFLP are described in the following sections. 

Multi-Item Facility Location Problems 

The literature contains many instances of the p-median and facility location 

problem that consider multiple items with dissimilar logistics characteristics such as size, 

cost, and demand preference. The first model to consider multiple items is Warszawski 

(1973) which outlines both a branch and bound and heuristic method for solving a multi- 

item facility location problem. Warszawski, however, believes the branch and bound 

method to be too computationally inefficient and concentrates on the testing of his 

heuristic method to solve the multiple-item uncapacitated FLP. Geoffrion and Graves 

(1974) formulate and solve multiple-item instances of the p-median and facility location 
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problems using an exact algorithmic method called Benders Decomposition. Other 

multi-item research by Neebe and Khumawala (1981) readdress the multi-item facility 

location problem formulated by Warszawski and provides an improved branch and bound 

method for its solution. Their algorithm uses an improved node selection rule which is a 

combination of two previously used rules, least lower bound and last in/first out. They 

test their new algorithm on several problems presented by Warszawski and Kuehn and 

Hamburger (1963), as well as a new group of larger problems with four items and as 

many as twenty warehouse locations. A heuristic approach for solving multi-item facility 

location problems is provided by Aggarwal et al. (1995) who address a composite 

problem consisting of maximum flow and minimum cost components. In addition, Pirkul 

and Jayaraman (1998) use heuristic procedures for solving a multi-item, multi-plant 

CFLP. More recently, Canel et al. (2001) formulate and analyze a more complicated 

multi-item, multi-period capacitated facility location model. This work presents the 

composite model and then suggests a three-phase solution algorithm which 1) identifies 

dominant facilities to be closed or opened for the duration of the analysis 2) uses branch 

and bound to solve the static multi-commodity phase and 3) uses dynamic progranmiing 

to create a multi-period solution from solutions generated in phase two. The model is 

then applied to a small example problem with only two items, two factories, four 

potential facility sites, five customers, and three time periods. This model provides 

excellent example of the type of composite facility location models that are being 

assembled from simpler models already developed in the Hterature. It also emphasizes 
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the limitation on the problem size when trying to find an optimal solution for a composite 

problem with a great number of features and requirements. 

Multi-Objective Facility Location Problems 

In the literature on location analysis and resource allocation, problems and models 

that try to simultaneously satisfy more than one objective appear with much less 

frequency. However, it is not uncommon for logistics and operations professionals to 

encounter conflicting objectives in real world problem scenarios. For instance, limiting 

demand response times to customers may necessitate a large number of supply locations 

near customer markets; however, the need to minimize costs implies centralization of 

supply stocks and limiting the number of supply or distribution facilities. Methods for 

analyzing such multiple objective problems are described by Steuer (1986), Vincke 

(1992) and others. Some of the first location problems to use multiple objectives are 

formulated by Lowe (1978), Ross and Soland (1980), and Tansel et al. (1982). 

Additionally, Berman (1985) formulates a multiple objective approach for minimizing 

travel and lost customer costs. Like many multi-objective approaches this research uses 

weights to define the importance and tradeoffs between objectives.  In a review of 

multiple objective location literature, Current, Min and Schilling (1990) state that 

minimization of cost and maximization of coverage are the two most common objectives 

used in a multi-objective approach. In addition, they state that most models use previous 

single objective models that are uncapacitated, static and with a single planning period 

and point towards the need for more research using stochastic inputs, capacitated storage 
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and flows and dynamic models with multiple periods. Other multiple objective work by 

Badri et al. (1998) uses integer goal programming to determine the number and location 

of fire stations and the demand areas they will serve in the City of Dubai. The model 

takes into consideration eleven strategic objectives and the optimum location of the 

model depends on which objectives are selected and the importance the decision maker 

gives to each objectives. This method is capable of generating a large number of flexible 

solutions and leaves any final decision making up to the practitioners utilizing the results. 

Additionally, Ogryczak (1999) recommends a distribution approach to multiple objective 

location problems which takes into account the entire distribution of customer service 

distances or times instead of merely analyzing the average distance (p-median approach) 

or the maximum distance (p-center approach). KoUi and Evans (1999) also apply multi- 

objective integer programming to solve location problems as they occur when trying to 

satisfy the conflicting objectives of franchisers and franchisees in the fast food industry. 

Nozcik (2001) formulates a multi-objective facility location problem that is a 

combination of the fixed charge facility location model and the maximum set covering 

problem. This is accomplished by formulating the facility location problem with 

coverage constraints in order to satisfy both objectives. Solutions are accomplished using 

two Lagrangian techniques: allocation relaxation and decoupling relaxation. Two test 

problems (62 nodes and 102 nodes) are solved using these methods and the decoupling 

heuristic is found to be better in terms of speed and quality of the solution. In additional 

work, Nozcik and Tumquist (2001) apply similar methods to formulate a combined 

facility location and coverage model that includes a weight term in order to manipulate or 
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vary the tradeoff between minimizing uncovered demand and minimizing cost. The 

model is applied to an automotive industry problem in order to locate distribution centers 

to serve 698 demand locations in the United States. Solving the problem in several 

instances allows the authors to map an efficient frontier to graphically visualize the 

tradeoff between coverage and cost minimization. For all solutions the number of 

distribution centers is determined endogenously by the model; however, the coverage 

distance and weight term must both be determined exogenously and input into the 

problem by the modeler. The research by Nozcik and Tumquist provides an example of 

how multiple objective location decisions for storing and distributing inventory can be 

made using composite facility location models. This research is aimed at continuing this 

effort while additionally considering multiple items and inventory allocation decisions in 

a similar model. 

Multi-Source Facility Location Problems. 

The Facility Location Problem can also be differentiated by whether or not a 

demand point may be supplied or serviced by more than one location. In the single 

source version of the problem each demand can be supplied by one location and in the 

less frequent multiple source problem each demand by be supplied by more than one 

location. In additional work on developing heuristic methods for the p-median problem. 

Cooper (1967) is the first to recognize and model a multi-source approach where the 

demand at a single destination may be supplied from one or more source locations. This 

approach to location modeling is rarely seen in the literature. Work by Akinc and 
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Khumawala (1977) use branch and bound techniques to provide solutions to a 

capacitated warehouse location problem that allows multiple sourcing. In addition, 

research by Geoffrion and McBride (1978) and Nauss (1978) during this same time 

period allow for multi-source location problems, but very little research in the last twenty 

years makes an effort to address multi-sourcing as a major part of location modeling. 

Location Covering Problems and the P-Center Problem 

Other variations of the p-median problem include different objective functions 

that do not attempt to find the minimum sum or median location for the system. Instead, 

decision makers may be more concerned with minimizing the response time or distance 

to all of the destinations being serviced. Such an objective may be necessary for location 

emergency facilities or for industries with high stock-out costs. For example the, P- 

Center or Minimax problem attempts to minimize the maximum distance of any demand 

point from a supply location (Hakimi, 1964; Morrill and Symons, 1977) and thereby 

finds the geographic center for the locations being selected. In addition, covering 

problems have been developed that use a maximum distance constraint between the 

supply and demand locations (Toregas et al., 1972; and Church and ReVelle, 1974). The 

two most famous covering problems are the Location Set Covering Problem (LSCP) and 

the Maximum Location Covering Problem (MLCP). The LSCP attempts to minimize the 

number of facilities to cover a given set of demands and the MLCP aims to maximize the 

quantity of demand covered with a limited number of supply locations. 
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Unfortunately the two covering problems have their drawbacks and are not 

robust enough for a wide range of uses. The LSCP must have an exogenously 

determined distance constraint input into the model by the user, and the resulting number 

of supply locations determined by the model may be prohibitively large (Daskin, 1995). 

The MLCP relaxes the assumption that all demand locations be covered and assumes it is 

feasible to not service a certain percentage of the demand. This may not be realistic for 

emergency oriented problems such as the munitions prepositioning problem. Therefore, 

in order to not predetermine the number of facilities or the maximum coverage distance it 

may be necessary to use the P-Center problem which has occurred throughout the 

location literature starting with Hakimi (1964). The p-center attempts to find the 

geographic center solution for the problem. For the 1-center problem this solution 

attempts to find the center of a circle with the minimum radius that encloses all of the 

demand locations. Such a solution seeks to find locations that guarantee a certain level of 

service and does not guarantee a minimum cost solution as sought in the p-median 

problem. Objectives for the p-center problem are typically formulated as minimax 

problems where the optimum solution minimizes the maximum distance to the demand 

locations. Such a problem has been shown to be NP-hard by Kariv and Hakimi (1979) 

and is addressed in the literature by Minieka (1977), Handler and Rozman (1985) and 

many others. Most recently Ogryczak (1997) considers a lexicographic minimax 

approach to location problems including the p-center problem. 
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Resource Allocation Problems 

The resource allocation problem is concerned primarily with allocating a scarce 

set of resources among competing activities. This includes the placement of emergency 

services resources and equipment and the stocking of strategic inventories at supply 

warehouses. These problems are usually modeled as either maximal covering problems 

or as minimax problems that attempt to minimize the maximum time in responding to any 

of the demand locations. Kolesar and Walker (1974) create such a model for relocating 

fire stations. Also, Kaplan (1974) studies military mission effectiveness and optimal ship 

loads based on the best allocation of resources. His research uses a maxi-min objective 

function with resources such as ammunition, food, manpower and fuel, and obtains 

solutions through simplified linear programming techniques. Brown (1979) studies 

resource allocation as it applies to the distribution of scarce water supplies and Agnihotri 

(1982) studies the distribution of a critical product among competing demands. Other 

research on resource allocation has considered multi-period problems (Luss and Smith, 

1988) and resource substitution (Klein, et al., 1993). A comprehensive review of 

resource allocation literature is given by Katoh and Ibaraki (1998). More recently, Luss 

(1999) has developed a multi-item approach for resource allocation problems using a 

lexicographic minimax objective function that ranks the importance of a group of items 

in a CFLP and solves the problem iteratively starting with the most important item and 

working towards the least important item. Additional resource allocation work by 

Carvalho and Powell (2000) develops a multiplier adjustment method for resource 

allocation problems. 
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Research on resource allocation has also considered inventory allocation for many 

years. The roots of this problem can be traced back to the research by Clark and Scarf 

(1960) on distribution system design. Other work by Schwarz (1981) considers 

distribution system design and emphasizes that distribution systems must consider 

inventory cost structures. This work also does much to argue for the justification of the 

centralization of inventory stocks in order to minimize system wide costs. Similar 

research by Jackson (1988) extends the work of Swartz by analyzing the effect of pooling 

inventory in a central warehouse and restocking retailers during each period. This 

research develops a mathematical function for approximating the holding and shortage 

costs of centralized inventory policies and conducts a number of simulations to measure 

these costs for different inventory stocking scenarios. Additionally, Erkip et al.(1990) 

addresses inventory resource allocation issues as they relate to determining the right 

amount of safety stock to hold at a warehouse with correlated demands. Also, Meller 

(1995) identifies a method for identifying the necessary increases in demand needed to 

offset the fixed cost of building additional distribution centers. More recent work, by 

Glasserman (1997) addresses critical safety stock levels and develops bounds for 

stocking levels in a multi-echelon system. In addition, Rappold and Muckstadt (2000) 

address a distribution allocation problem with short production and transportation lead 

times. 

Since the work of Brown (1979) and Agnihotri et al. (1982), little research has 

addressed the allocation of strategic resources or inventory as needed in military or public 

sectors with the exception of repairable inventory models and theory. Instead, the 
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majority of the research on inventory allocation addresses stocking policies and inventory 

centralization in multi-echelon retail inventory systems typically seen in the business 

world. However, the research and literature containing inventory modeling and resource 

allocation methods contains many aspects of facility location analysis and thereby lays 

the groundwork for developing combined or composite models that simultaneously 

address resource allocation and facility location as a single problem. 

The Combined Location and Resource Allocation Problem 

A limited amount of research has been conducted on problems that combine 

location analysis with resource allocation (Geoffrion (1979)). Benjaafar and Gupta 

(1998) conduct an analysis of production facility selection that focuses on the number of 

facihties to build and the subsequent capacity and product mixes to manufacture at each 

location. Additionally, Erlebacher and Meller (2000) formulate a Location-Inventory 

Problem that combines inventory ordering and carrying costs with an uncapacitated 

single-item facility location problem. Syam (1997) extends the capacitated facility 

location problem by restricting the number of locations that can be opened in a particular 

region. In addition, the model allows different capacity size options at the potential 

facility locations and therefore simultaneously considers the decisions of location and 

resource allocation. However, only three discrete capacity sizes are considered by the 

model limiting it significantly in comparison to a model which must consider a large 

number of different inventory stocking options. In addition, Antunes and Peeters (2001) 

provide heuristic solutions for the problem of locating school classrooms in Portugal by 
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solving a combined resource allocation and location problem. This work simultaneously 

considers the positioning of a resources and the selection of locations. However, the 

model does not consider multiple items or the logistics costs associated with resource 

positioning decisions. The work by Antunes and Peters, however, is a major step towards 

developing heuristics methods for solving such a combined model. More recently, Syam 

(2002) simultaneously addresses the problem of selecting location, shipment sizes, 

capacity and shipping cycle time in a capacitated facility location problem called the 

location-composition problem. This model includes inventory costs typically associated 

with the Economic Order Quantity (EOQ) model, includes high levels inventory 

turnover, and does not address strategic issues associated with coverage. However, the 

Syam model does allow for multiple sourcing of demand from more than one warehouse 

location and is the most recent step in the development of composite models that consider 

resource allocation as well as location decisions. 

Modern Search Heuristics 

Despite the fact that several advancements in exact algorithmic techniques have 

been accomplished during the last three decades, the use of heuristic methods continues 

to provide a source of solutions for compUcated facility location problems. Geoffrion 

and Powers (1995) state that the majority of companies using location software models 

are using software programs with heuristic algorithms. Very few use software that 

implements exact algorithmic techniques because of the slow migration of exact 

techniques from the mainframe to desktop computers and the lack of Graphic User 
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Interfaces. Even though Geoffrion expects that the non-optimizing techniques will 

eventually fade from use, he does believe they will still be used to capture savings in 

computational time for larger problems and that heuristics techniques themselves will 

continue to advance in sophistication. These expectations have proven themselves during 

the past decade with the development of modem search heuristic techniques such as Tabu 

Search, Genetic Algorithms, Neural Networks, Ant Colony Search, and Simulated 

Annealing. Each of these techniques is widely documented in the literature and provides 

improvements in global optimization, pattern recognition and search routines for a variety 

of research fields and problem applications. 

Tabu Search is attributed to the work of Glover (1977,1990) and is successftiUy 

applied to location and resource allocation problems by Brimberg and Mladenovic 

(1996), and others. In addition, Brimberg et al. (2000) compare heuristic methods for 

solving location problems using several heuristics including genetic algorithms and Tabu 

search. Genetic algorithms are equally well represented in the literature and have been 

applied to location problems by Houck and Jones (1996), Preston and Kozan (2001), and 

Jaramillo, Bhadury, and Batta. (2002). Neural Networks are less prevalent in the location 

literature but have been applied to resource allocation (Coit & Smith, 1996). Ant Search 

is a more recent heuristic search method attributed in large part to the work of Dorigo and 

Gambardella (1996) but has not yet been applied to location or resource allocation 

problems. 

This research uses the final modem search heuristic listed above. Simulated 

Annealing. This method first used by Kirkpatrick, Gelatt, and Vecchi (1983) appUes a 
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process first proposed by Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and M. 

Teller (1953) to simulate the process of the annealing of metals to solve combinatorial 

optimization problems. Since then, this technique has been applied to location and 

resource allocation problems by Liu and Kao (1994), Ohiemuller (1997), McMuUen and 

Strong (1999), and Antunes and Peters (2001).   The process of simulated annealing is 

analogous to the metallurgical process of annealing in which the cooling of molten metal 

is controlled in order to insure the metal reaches an optimal crystalline structure. This 

state is desired in order to achieve correct physical characteristics such as the level of 

hardness or malleability in a metal. Similarly, the heuristic search method of simulated 

annealing uses a cooling schedule to control the decreasing probability of accepting an 

inferior solution in the simulated armealing search process. Periodically accepting an 

inferior solution allows the search to explore a greater portion of the feasible search area 

and helps to avoid being trapped at local minima. This ability helps the search obtain 

solutions that are much closer to the globally optimum solution similar to the actual 

process of annealing. The parameters for controlling the simulated annealing process and 

the implementation of this process in this research are presented in the Methodology. 

Descriptions of simulated annealing are presented in the literature by Kirkpatrick et al. 

(1983), and Eglese (1990). In addition, texts describing Simulated Aimealing and 

combinatorial optimization in fiirther detail are provided by Azencott (1992) and Aarts 

and Leenstra (1997). 



Methodology 

Air Force Problem Approach. 

The components, procedures and responsibilities for the US Air Force's 

munitions pre-positioning program are outhned in Air Force Instruction 21-201, Chapter 

15: The Global Asset Pre-Positioning (GAP) program.  This regulation provides 

guidelines for the positioning and management of stocks of WRM munitions which are 

meant to be available to be transported to wartime locations in time of a conflict. More 

importantly, the Air Force Instruction designates that "Theater pre-positioned assets, 

although an integral part of GAP, are managed by owning theater commanders." This 

directive gives commanders in Europe, Southwest Asia and the Pacific the autonomy to 

position their WRM munitions where they believe they will provide the highest level of 

preparedness and were they can be properly stored and maintained (AH, 2000). In 

addition. Air Force Instruction 21-201 does not provide a mathematical model for making 

pre-positioning decisions at either the global or theater level. However, such models are 

used by logistics planners in the US Air Force to analyze the munitions pre-positioning 

problem and related logistics decisions (Yost 2001, Synergy 2001).  These combinatorial 

problems are addressed using mixed integer programming and goal programming in 

order to evaluate munitions positioning alternatives for the Air Force. However, no 

known model uses the heuristic methods used in this research. Such studies do provide 

an overview of the history and regulations behind the US Air Force positioning programs 

40 
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and procedures (Johnstone 2002) and provide a baseline for the size of expected conflicts 

and the resulting munitions demand requirements for such conflicts. 

start 
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Figure 1. Research Process 

Description of Data and Research Process. 

Several types of data are acquired from US Air Force sources in order to 

initialize and run the model for this study. Location coordinates for possible supply and 

demand sites, munitions demand data, facility and transportation cost data, and a set of 

notional munitions inventory quantities are all used to develop a realistic model of the 

Munitions Pre-Positioning Problem. This data is used in the pre-positioning process of 
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this research described in Figure 1. Initially, a forecast of demand is determined for the 

munitions types under consideration for a predefined time period. Then, a particular 

conflict scenario (MTW, SSC or both) is selected and location data, cost data and 

munitions inventory data are input into the process. This combined information is 

compared to the preexisting positioning state to determine the initial ability of the Air 

Force to meet future demands as described by the model's objectives. In the final step, 

incremental changes are made using a search algorithm in order to explore different 

positioning options and to make improvements to the objectives of the model. The data 

sets necessary for this process are described in detail below and are listed in Appendix B. 

Munitions Facility Locations and Costs. 

Several references are used to identify military airbases and other known logistics 

locations that transport and store munitions around the world (Johnstone 2002, Recknor 

& Osbome 1998, Underwood and Bell 1999, US Air Force 2002). Initially, over one 

hundred potential munitions storage sites around the world were identified for possible 

inclusion in the study. These locations are a combination of current storage locations, 

past storage locations, and locations where the US Air Force has engaged in major 

conflicts or exercise during the last seven years. Next, the locations were cross- 

referenced with the US Air Force's Forceview Database at the US Air Force Wargaming 

Institute at Maxwell Air Force Base, Alabama, in order to verify the existence of military 

facilities and to acquire accurate longitude and latitude coordinates needed in the distance 
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computations of the model (Bush, 2000). This vaUdation was necessary in order to verify 

the existence and exact location of smaller sites identified by the military installation's 

name instead of by a more common city name that might be found in a typical geographic 

information system. For running the model, the location set was reduced to exactly 100 

potential locations dispersed throughout the three major overseas theaters of the Pacific 

Command, Central Command and European Command. No locations in the Western 

Hemisphere are included in this model, as the model does not address homeland defense, 

or possible miUtary conflicts in Latin America. The only exceptions to this rule are the 

existence of munitions locations in Eielson and Elmendorf Air Force Bases in Alaska due 

to their importance for supporting possible operations in Northeast Asia. A list of the 

locations is contained in Appendix B. 

Possible storage capacities for munitions storage facilities and the costs of 

constructing such facilities were obtained with help from the Air Force Logistics 

Management Agency, Maxwell Air Force Base, Alabama (McMillon, 2002). This 

organization provided military budgeting documents estabUshing the cost for a new 

Munitions Warehouse at approximately $1,000,000 dollars (Construction, 2001). 

Existing Air Force munitions storage areas in overseas locations might contain anywhere 

from 50 to 100 warehouses and each location also contains three to four munitions 

maintenance facilities to ensure the serviceability of the munitions when needed for war. 

Some existing sites such as Ramstein, Germany; Anderson, Guam; and Kadena, Japan 

have 100 munitions warehouses or more. However, in the model construction of new 

sites is limited to three different sized storage areas with up to 40 warehouses. Locations 
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in countries considered major allies and locations relatively close to existing US military 

locations are able to construct 40 warehouses. More distant locations are only allowed to 

construct 20 warehouses and the most remote locations are limited to 10 warehouses. 

Based on these numbers, the costs to open the munitions storage areas for the model is 

computed by multiplying $1.0 million by the number of warehouses needed and then 

adding an additional $5.0 million for munitions maintenance facilities and other 

necessary equipment and vehicles needed to run the site. Therefore, the maximum initial 

costs for munitions areas are $15.0 million for a small site, $25.0 miUion for the medium 

size site and $45.0 million for the largest site. Closing costs for the three storage area 

sizes are computed as 5% of the total opening costs for a site of the same size. These 

closing costs are added to the model since it is likely the US will not be able to sell or 

receive other compensation for the storage facilities at closed sites and will still have to 

pay for the redistribution of munitions and other equipment from the site. 

The capacity for the three sizes of munitions areas is determined by taking into 

consideration the number of storage facilities and the tonnage of munitions stored at the 

location. The number of weapons and the total weight of munitions stored in an 

individual munitions storage warehouse depend greatly on the type of munitions being 

stored; however, approximately 10,000 tons of munitions of the types used in this study 

can be stored in a munitions storage area containing 40 warehouses (250 tons per 

warehouse). Therefore, capacity constraints in the model are calculated and verified by 

converting the number of each weapon type stored at a location into a total ton 

measurement and ensuring it does not exceed the Umits set for each size of storage area. 
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The three capacities are Unearly set at 2,500, 5,000, and 10,000 tons. The ton conversion 

rates for the weapons considered in the study are listed in Appendix B. 

Combat Location Data. 

Previous research by Johnstone (2002) contains notional munitions demand data 

for a Major Theater War in Southwest Asia and Small Contingencies in Europe and 

Northeast Asia developed with the help of US Central Command, Tampa, Florida. This 

study contains demands by individual weapon type and is therefore close in scope to this 

study. Other similar models measure all munitions by tons and do not consider 

individual munitions items (Abell et al., 2000). Therefore, the Johnstone data is used as a 

baseline for developing mimitions demands for this study. However, several 

improvements and expansions of the data are made in order to provide a broader scope of 

munitions demand. First, two additional weapon types are added to the eight originally 

considered by Johnstone. In addition, a Major Theater War Scenario for Northeast Asia 

is created by doubling the size of munitions demands from the Southwest Asia MTW and 

assigning them to five current locations located in the Western Pacific Region. It is 

logical to make the new MTW twice as large since munitions demand would be much 

larger in this region to accovmt for larger militaries and industries of potential enemies in 

this region compared to those in Southwest Asia.   In addition, a Small Scale 

Contingency is developed for the Southwest Asia region in the same manner by using a 

similarly sized demand for mvmitions from another SSC and assigning it to three 

commonly used munitions storage areas in Middle East. Using the MTW and SSC 
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scenarios, three different demand sets are built containing different mixes of possible 

conflicts. The first scenario called "MTW" contains six MTW conflicts, two SSC 

conflicts and a group of randomly generated demands (20% of the total demand) 

representing unexpected conflicts during the planning period. The second scenario 

named "Mix" consists of four MTW, four SSC, and the group of randomly generated 

demands. Finally, the third scenario, "SSC" consists of six SSC, two MTW and the 

randomly generated locations. These three different problem scenarios are also varied by 

number of total demand locations (n=50 and n=100). This results in a total of six 

different problems for the study. The Design of Experiment section fully describes the 

methodology and related experiment for these problems and each demand set is listed in 

Appendix B. 

The initial locations and munitions positions are based on munitions numbers and 

locations used in the Air Force's Global Engagement war-game conducted at Maxwell 

AFB, in November, 1999 (Air Force Logistics Management Agency, 1999). Twenty 

sites from the three major overseas regions (Pacific, Europe, and the Middle East) are 

selected as the initial supply locations for the model, and the supply quantities for each of 

the ten weapons for the study are equal to the munitions quantities used by the war-game 

for the three major regions. 

Munitions Transportation Costs. 

Actual data for shipping tons of munitions in the different theaters of the world 

was provided to this study by Headquarters US Air Force Material Command's 
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Requirements Division for Munitions (Panzer, 2002). This data establishes the relative 

transportation costs for the three overseas theaters and shows the average surface 

transportation rates for the European Theater, Central Theater, and Pacific Theater for 

Fiscal 2000. The air cargo rates for defense transportation were acquired from 

Headquarters US Air Force Air Mobility Command (AMC), Scott AFB, Illinois (US Air 

Force Air Mobility Command, 2002). As expected, these rates are significantly higher 

than the surface transportation rates. Using these sources, the cost data for air and 

surface transportation for this study were established and can be seen in Table 1. Overall, 

these costs more accurately reflect the costs for different modes of transportation used by 

the Air Force transportation system around the world and highlight the difference in costs 

between regions and the expense of air transportation. 

Table 1 

Transportation Costs ($/ton/mile) 

Command 

Euro     Cent       Pac 

Distances 

<500      500-1000      1000-4000     >4000 

Surface Rate   .12 .18        .30 

Air Rate . . _ 4.00 2.00 1.00 .75 
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Finally, the location and region for determining transportation rates is based on 

the shipping origin of the munitions. For example, costs for munitions shipped from 

Hickam AFB, Hawaii to Ramstein AFB, Germany, are calculated using the Pacific 

Region's transportation rate for munitions tons if the move is my surface transportation. 

Air transportation rates are simply calculated based on the distance between the two 

locations. 

Formulation of Combined Inventory Allocation and Facility Location Problem. 

The variables for describing the combined inventory allocation and facility 

location problem are listed in Table 2. This problem is considered static and does not 

consider the changes from one time period to the next as seen in a dynamic model. Even 

though the conflicts may be thought of as occurring in different time periods or years, 

they are aggregated into one common planning period (m=50 or m=100) and no one 

conflict is said to occur before another during this planning period. Also, the problem is 

said to be zero-echelon, meaning that production plants are not considered and that only 

the location of distribution facilities is considered. In addition, no hierarchy of these 

distribution locations is used or implied in the model. Since the problem is multi- 

objective, two different objective functions are presented where the first objective is a 

multiple item, capacitated facility location problem similar to the original single-item 

formulation of Akinc and Khumawala (1977). 
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Table 2 

Problem Variables 

J 

Abbreviation/Symbol Definition 

n Number of potential supply facility locations 
m Number of combat demand locations 
q Number of different weapon types 
p Number of distinct conflicts 
i Index for the set of potential supply locations n 

Index for the set of combat demand locations m 
k Index for the set of inventory weapon types q 

Aj- Total distribution cost of shipping all required munitions from 

location / to combat location 7 
Cy^ Per unit distribution cost of shipping item k from supply location / to 

combat location 7 by mode of transportation t, where t=l represents air 
transportation and t = 2 represents surface transportation 

X,.j Number of units of item k shipped from location i to combat locationy 

O, Fixed cost of opening location i 

CL^ Fixed cost of closing location / 

Yj 1 if supply location i is opened from a closed state, and 0 otherwise 

fi Fractional number of units allowed to shipped by air, set at .10 

Z,. 1 if supply location i is closed from an initial open state, and 0 otherwise 

5,jt Number of inventory units of supply of item k at location / 

Dji^ Total demand at combat demand location 7 for item k 

Uji 1 if combat demand 7 occurs during conflict /, and 0 otherwise 

7] Total physical capacity of supply location / in tons 

W^ Number of tons per unit of weapon type k 

Dist- Distance between supply location / and demand location 7 

Circ^ Circuitry routing factor for surface transportation from location / 

r Radius of the earth, equal to approximately 3956 miles 
t Mode of transportation, 1 if air and 2 if surface transportation 
(p Latitude of a location 

y Longitude of a location 
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This problem is a mixed integer program with n supply facility locations, m number of 

combat demand locations, q number of different weapon types, and/? number of distinct 

conflicts. The formulation is as follows: 

Minimize        Z E 4 + E (^-^ ^L'^') 
'   j 

With 

/ = 1 to n, andy = 1 to w 

Dist,^ = r * (2 tan"' (V^, VT^)) 

b = sin ^{(Pj-fP.) 
-i2 

+ cos(^,) * cos{(pj) ' sm 
irj-Ti) 

Subject to       Yj^ijk=D Jk 

^ijk -^ik 

JlDj,Uj,<j;^s, 
i i 

^,.^0 

F e 0 or 1 

y = 1 to m, A:=l to q 

i = I to n, J = I to m, k=l to q 

^= 1 to^, 1= 1 top 

i=lton 

/■ = 1 to n,j = 1 to »7 

/ = 1 to « 

(1) 

4 =T.(Cm H^*X^,)*Dist^.) + Y,(C,,, *{{\-P)*Xy,)*Circ, *Dist^ (2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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In the objective ftmction (1), the first term shows the intent to minimize the total 

distribution costs ^^^ for shipping the required munitions from their supply locations / to 

the location for each demand occurrence7. The Ay/^ values are computed using (2) 

where J3 is the fi-action of the total requirement for each weapon type k that uses air 

transportation costs,C,^^,, and the remaining (l-^) uses the surface transportation cost 

rate, Cy^^ • Additionally, the circuitry routing factor Circ^ is used to adjust distances for 

the mode and quality of surface transportation available at supply location i. All 

distances are calculated with the Haversine distance computation in (3) and (4) which 

uses the longitude and latitudes of the two locations, the radius of the earth r and several 

trigonometric calculations to compute the distance between two locations on the earth's 

surface (Siimott, 1984). The second term adds facility opening and closing costs to the 

objective function. The first constraint (5) requires that all of the demand for a particular 

weapon type k at each demand location^' is filled by shipments fi-om the supply locations. 

In addition, this constraint allows for multiple sourcing of munitions fi-om more than one 

supply location /. Next, constraint (6) insures that the number of units of weapon k 

shipped fi-om location / does not exceed the total inventory ofk currently positioned at 

this location. Constraint (7) insures that the demand for each weapon k at the demand 

locations/ belonging to conflict / does not exceed the total quantity of weapons stored at 

all locations /. This constraint insures no shortfalls in the solution of the problem. The 

next constraint (8) verifies that the quantity of all weapons types k measured in tons and 

stored a location / does not exceed the total ton capacity 7] for the supply location. 
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Constraints (9) forces non-negativity of the quantities shipped and stored by the model, 

and constraint (10) insures that variables Y^ and Z,. are constrained to the binary integer 

values 0 or 1. 

Conflicts in the different problem sets contain either three, four or five distinct 

combat locations. It is important to note that the location of a combat occurrence; may 

occur more than once in a planning period m as long as the location does not occur more 

than once in any conflict /. For example, in the MTW scenario, Incirlik Airbase is the 

second (j=2) combat demand location and is also the twelfth combat demand location 

(7=12). However, this does create a violation sincey=2 is a part of the first conflict (/=1) 

and 7=12 is apart of the third conflict (1=3). A complete list of the conflict demand 

locations and the conflict numbers they belong to are listed in the problem demand sets in 

Appendix B. In addition, the problems have been prescreened to insure no conflict 

demand location occurs more than once in a conflict to preclude additional constraints in 

the formulated model. 

Formulation of the second objective is a variation of the p-center problem on a 

network and is formulated as the minimax objective, 

''ZT^X,j,Disty+Y,Ti^-fi)X,,Dist,Circ, 
mm max-^ I      k i     k 

Zo jk 

>   forj=l torn        (11) 
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This objective minimizes the maximum average shipping distance for all of the munitions 

required by any location/ For example if m = 50, the average shipping distance for all of 

the weapons required by each of the fifty combat demand locations is calculated and then 

the maximum value is minimized by the objective function. This objective is aimed at 

trying to provide service equity to each of the demand locations m and in many instances 

works against the mini-sum (median) objective found in the first objective for the 

problem. 

As detailed in the Design of Experiment section, the model finds solutions that 

satisfy both objectives from an initial starting position with a number of already opened 

supply locations and a set of predetermined initial inventory quantities. However, the 

model is not considered a conditional facility location model since none of these 

locations is required to be in the final solution. Instead, the model is allowed to close any 

or all of the initial facility locations and move inventory to newly opened supply 

locations as dictated by the solution algorithm. Additionally, the model endogenously 

decides which locations to open and close and may decide on any final combination of 

supply locations up to the total number of potential supply locations n for the problem. 

Combinatorial Aspects of the Problem. 

The number of feasible solutions to the problem and the time it takes to find a 

globally optimal solution are substantial for the problem studied in this research. Both 

the facility location problem and p-center problem are considered NP-Hard and no known 

polynomial time efficient algorithms are known to solve them (Kariv and Hakimi, 1979). 
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The number of combinations for facility selection alone is considerable. For example, in 

a problem with n= 50 possible supply locations, the number of combinations of 25 supply 

locations (r) is equal to. 

C    =      "'      = ^   ^J     = 126,410,606,437,752 (12) 
n,r r {n-r)\    (25!X25!) 

However, in the problem considered in this study we do not set a fixed value for r, 

therefore the total number of combinations just for facilities is the equal to the summation 

of all of the values computed by equation (12) for r = 1 to n.   In addition, at each of 

these unique facility location combinations the inventory quantities 5,^ are varied by the 

algorithm. This adds a great number of additional combinations of feasible solutions to 

the problem. Computational ability prevents actually calculating the total number of 

combinations of combined inventory positions and facility locations. Regardless, it is 

understandable that heuristic methods are needed to find improved solutions to the 

problem.  The program developed for generating solutions to the Munitions Pre- 

positioning Problem for this study is the heuristic algorithm Simulated Annealing. 

Simulated Annealing Algorithm. 

Simulated Annealing is based on the physical properties of the metallurgical 

practice of annealing. During this process a metal is heated and then slowly cooled in an 

attempt to find the crystal structure that provides physical properties desired in the metal. 
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Typically, annealing is used to increase hardness in a metal or to reduce brittleness. 

Analogous to this technique, Simulated Annealing searches the set of feasible solutions to 

a problem by occasionally accepting an inferior solution to the problem in order to 

eventually find an improved condition and subsequently prevent being trapped at a local 

minimum for the problem. The probability of accepting an inferior solution is controlled 

by a parameter referred to as the temperature. The initial temperature for the search is 

typically set at a relatively high value in order to provide a high probability of accepting 

an inferior solution at the beginning of the search. This allows the search to explore 

different regions of the search area and to avoid local optima trapping. However, as the 

search progresses the temperature is slowly decreased using a cooling rate and the 

probabiUty of accepting an inferior solution is consequently decreased as well. This 

ensures that towards the end of the search, the model concentrates on typically accepting 

only actual improvements to the current objective function value. The search ends when 

the temperature reaches a predetermined final temperature value and the best solution is 

output by the model. The success of this technique for finding formidable solutions to 

combinatorial optimization problems has been well documented by researchers, and the 

technique has not yet been widely used by location analysts for solving complex location 

problems. 

The simulated annealing algorithm and related C++ programming code used to 

generate solutions for the model is listed in Appendix A. Examination of this Appendix 

reveals that the performance of the Simulated Annealing search methodology is largely 

dependent on several variables. These variables include the cooling rate, initial and final 
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temperatures, the number of iterations at each cooling level, and the probability of 

accepting an inferior solution. For this study, the cooling rate is held constant at 95% a 

value commonly used in simulated annealing procedures (Azencott, 1992). In addition, 

the initial temperature, a control parameter, is set equal to 25, the final temperature is set 

to 1 and the number of iterations at each cooling level is 5,000 (McMuUen and Frazer, 

2000) a value found to be sufficient in pilot-testing. All runs of the model in this study 

use these values for accomplishing simulated annealing. Using these parameters the 

model accomplishes 5,000 iterations and then reduces the initial temperature of 25 by 

multiplying it by the cooling rate of .95 to obtain a new temperature of 23.75. Then 

additional cycles of 5,000 iterations are accomplished repetitively reducing the 

temperature each time until the final stopping temperature, T^ =1 is reached. An 

additional simulated annealing parameter is the probability of accepting an inferior 

solution. This probability is initialized in the model by setting a Boltzman constant y5 

such that the probability of accepting an inferior solution is set to a given percentage at 

the initial temperature. This relationship is defined using the variables in Table 3. The 

Boltzman constant is determined by the initial temperature and the desired probabilities 

and is formulated as: 

j3 = ^^  (13) 
\n{PA^)Temp^ 

The Boltzman constant is used in order to allow the user to maintain control over the 

search. For example, if the user wants to provide a 4% chance of accepting a solution. 
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which is 3% inferior to the current solution, at the initial temperature of 25, the Boltzman 

constant is determined to be .0003728 using (13). This fixed constant in the acceptance 

function implies that small increases in the objective function are more likely to be 

accepted than larger increases. In addition, as the model runs through successive 

iterations of the search, the temperature declines and the fixed Boltzman constant insures 

that the probability of accepting inferior solutions decreases. Towards the end of the 

search, the probability of accepting an inferior solution approaches zero and the 

algorithm concentrates on accepting only actual improvements to the objective function. 

Table 3 

Boltzman Variables 

Abbreviation/Symbol Definition 

PA 
(E) 

Probability of acceptance at the initial temperature 
Percentage difference between the current solution and the 
inferior solution being considered 
Initial temperature 

Final temperature 

This research uses an acceptance probability of 4% for solutions up to 4% inferior at the 

initial temperature of Tj = 25. 
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Generation of Solutions. 

The program for generating solutions is outlined in Figure 2. This process begins 

by initializing the simulated annealing parameters for the problem and inputting the 

initial locations and inventory quantities for each weapon type at each location.  This 

inventory positioning is then used to determine the initial values for the two objective 

functions (cost and coverage) prior to starting the simulated annealing process. After 

verifying the temperature, the first important decision is to determine whether the model 

will explore a facility location change or transfer inventory from one current location to 

another location within the capacity constraints of the supply locations. The probability 

of the iteration being a supply location change is set equal to 5% and all other iterations 

are inventory transfers. Variation of this value as an experimental value in further 

research is also warranted; however, for this research the value is fixed to not counteract 

the effects of the experimental factors. An inventory transfer is accomplished by first 

selecting at random one of the weapon types for a transfer (equal probability for each 

weapon type). Then two locations are selected for the transfer. The first location must 

have inventory of the weapon type to move and the second location must not already 

have reached its capacity for all weapons stored. The transfer is accomplished by simply 

subtracting the transfer quantity at the first location and adding the transfer quantity at the 

second location. The size of the transfer quantity is an experimental factor used in this 

research since it is believed that transfer sizes larger than one might provide a significant 

improvement in the cost and coverage values found by the search algorithm. 
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start 
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Parameters 

Input Demand 
and Location 
Data 
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objective function 
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Identify locations 
to transfer Update Temp 

Figure 2. Flowchart of Simulated Annealing Model 

The location transfer is a much more aggressive type of change than a simple 

inventory transfer. First, a potential location not already being used as a munitions 

storage location is selected at random as the site to open from all of the available 

potential sites. Then a current supply location is selected at random to be closed. The 
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location transfer is accomplished by moving the entire inventory for all weapon types at 

the current location to the new location. This change results in hundreds or even 

thousands of munitions being transferred at once and results in both closing and opening 

costs being added to the objective function (2).   The aggressiveness of these location 

transfers is the primary reason for maintaining the probability of a location transfer at 

only 5%. 

After accomplishing either an inventory transfer or location transfer, the model 

computes new values for both objectives.   The new value for the first cost objective is 

used for comparison to previous solutions. If this value is less than the initial solution, 

then the new solution is kept as the current solution. If not, the metropolis criterion is 

explored using the previously described probability of accepting an inferior solution. 

This allows the possibility of accepting the new solution as the current solution even if it 

did not result in a cost improvement. The model also tracks the best cost solution found 

throughout the entire search and its corresponding coverage value. 

During each iteration, the maximum average coverage value is also calculated. 

After a preset number of iterations, the search is reset to the solution with the best 

coverage value yet found. The search and generation of new solutions begins again from 

this point. In this manner, the simulated annealing search runs primarily on the first 

objective (minimum cost); however, the search is continuously redirected back to the 

search area where the minimum maximum coverage value has been discovered. If this 

reset occurs after only a small number of iterations, the search for solutions might be 

confined almost entirely to finding improved coverage values. However, if the reset is 
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done after an extremely large number of iterations, then it is believed that the search will 

be almost exclusively based on the first objective. Determining the number of iterations 

to compute prior to resetting the search to the best coverage value is an additional 

experimental factor for this research. 

Example Problem. 

The generation of solutions is easier to understand when analyzing a small 

example problem with three supply locations, five combat locations, and two weapon 

types. The five demand locations are each a part of a single conflict/?. Initially, there are 

eight units of each weapon at location 1, four units of each weapon at location 2 and 

Demand 5 
Demand 4 

Location 1 

Weapon 1 Weapon 2 
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<^ ^ 
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Location 2 

Weapon 1 Weapon 2 
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Demand 2 

■w Demand 

Location 3 ^J) 

Weapon 1 Weapon 2 

Figure 3. Example - Initial Position 
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location three is currently closed as seen in Figure 3. Also, the five combat locations 

each require two units of each weapon type and each supply location has a capacity of ten 

tons. Using this initial positioning information and the geographic coordinates for eight 

European locations, the initial objective value from (1) is $1574.34. In addition, the 

solution results in a maximum average coverage value of 504.6 miles from (11). In the 

first iteration of the model, an inventory transfer is accomplished moving one unit of 

weapon 2 from location 1 to location 2 as seen in Figure 4. This transfer allows demand 

location 3 to receive one unit of weapon 2 from location 2 and one unit from location 1. 

This solution results in a cost of $1201.20 and a maximum average coverage value of 

320.1 miles. The next iteration, a location transfer 
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Figure 4. Example - Inventory Transfer 
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involves transferring all of the inventory currently at location 2 to location 3 as seen in 

Figure 5. This new positioning results in objective function values of $909.17 and 291.4 

miles. Continuing in this manner, inventory and location transfers are accomplished as 

directed by the simulated annealing algorithm. Solutions that generate actual 

improvements in objective (1) are accepted and sometimes inferior solutions 
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Figure 5. Example - Location Transfer 

are accepted in order to keep from being trapped at a local optimum. Throughout the 

search, the second objective (11) is generated for each solution and periodically the 

search is redirected or reset back to the solution that has found the best value for (11) and 
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the search begins again. In this manner, a number of feasible solutions are generated and 

the best solutions (those with minimal cost in a particular coverage range) are captured 

and portrayed in an efficient irontier. The efficient frontier allows the decision maker to 

visualize the tradeoff between the two competing objectives of cost and coverage. An 

example with twenty solutions foimd using the model is seen in Figure 6. The initial 

solution in Figure 6 is inferior to all of the solutions in terms of coverage. However, 

increases in coverage result in the majority of the other solutions having an increased cost 

value. As depicted by the arrow, preferred solutions are those in the bottom left of the 

chart which result in a simultaneous decrease in the maximal average coverage value and 

the total cost. 
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Figure 6. Example Efficient Frontier 
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Design of Experiment 

An experiment is conducted in order to assess the model's ability to find solutions 

to six different problems that satisfy both objectives of the problem. This experiment is 

intended to answer a number of predetermined research questions. In addition, a 

structured design of the experiment is established in order provide evidence for 

answering the research questions in a manner where the results can be evaluated using 

statistical methods. 

Researcli Questions. 

The primary purpose of the research is to find solutions to the Munitions Pre- 

positioning Problem while insuring that the multiple objective nature of the problem is 

adequately addressed. In addition, it is the intent of the research to experimentally 

explore what techniques might improve the search algorithm's abihty to find improved 

solutions to the problem. With these purposes in mind, several specific research 

questions are established. 

1. Can the proposed Simulated Annealing solution algorithm find efficient solutions to 

the model of the Munitions Pre-positioning Problem that simultaneously improve both 

objectives of the model in comparison to the initial solution? This question is answered 

by first mapping an efficient frontier of the solutions in order to identify the trade-off 

between the two objectives. From the efficient frontier, a "best" solution is selected for 

further analysis by determining which of the identified solutions provides the best total 
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percentage reduction in both cost and coverage equally weighting the importance of the 

two objectives. These best solutions are then compared to the cost and coverage 

generated by the initial solutions. 

2. Do the results for the dependent variables, cost and coverage, depend on the problem 

configuration? In other words, are there primary effects for the problem configuration 

research factor? Since the problems vary in the type and number of conflicts, it is 

thought that the dependent variables will also vary depending on the configuration of the 

problem. This research question is analyzed using multiple analysis of variance 

(MANOVA) and any main effect differences in the two dependent variables resulting 

from the problem configuration levels are analyzed using Tukey's pairwise confidence 

intervals. 

3. Do the results for the dependent variables cost and coverage depend on the transfer 

size selected? The number of munitions moved during each inventory transfer may 

significantly impact the ability of the algorithm to find improved solutions. It is believed 

that the level of this factor will have a significant impact on the cost and coverage values 

for the solutions generated. The effects of the different levels of transfer size are 

analyzed using MANOVA and any main effect differences in the two dependent 

variables resulting from the transfer size levels are analyzed using Tukey's pairwise 

confidence intervals. Relevant treatment mean differences are examined using intervals 

developed using the Bonferoni procedure (Neter, 1996) 
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4. Do the results for the dependent variables, cost and coverage, depend on the reset 

frequency? How often the solution resets itself to the best coverage value is also believed 

to affect the cost and coverage values of the solutions. It is believed, that if the algorithm 

resets itself to the best coverage solution after only a few iterations then it may 

concentrate on finding best coverage solutions, whereas if the number is quite large the 

algorithm might be concentrate solely on improving the cost objective. The different 

levels of reset frequency are analyzed using MANOVA and any main effect differences 

in the two dependent variables resulting from the reset levels are analyzed using Tukey's 

pairwise confidence intervals. Relevant treatment mean differences are examined using 

intervals developed using the Bonferoni procedure. 

Experimental Factors. 

The experiment consists of six distinctly different problems in order to represent a 

broad range of possible demands on the model. There are three different conflict types 

(MTW, SSC, and Mix) intended to represent a range of different conflict demands. In 

addition, the size of the planning period is also a major consideration since the model is 

static and does not try to dynamically depict conflict occurrences in a temporal manner. 

Two different size problems are considered: one with 50 total demand locations (m) and 

another with 100.  These two major differences result in six distinctly different problems 

for the factor "problem configuration". The differences in cost and coverage for the 

different problems as well as the models ability to find solutions for all six problems are 

addressed in the research questions. The model's ability to find improved solutions is 
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tested with two different factors. The multiple objective reset frequency is set at three 

different iteration levels and the transfer size is set at three different levels listed in Table 

4. The combination of these two factors with the problem configuration factor results in 

a 6 X 3 X 3 full factorial design with 54 factor-level cells. 

Table 4 

Experimental Factors 

Factors 

Problem #/Type - Locations Transfer Size Reset Frequency 

1 MTW-50 5 
2 MTW-100 25 
3 SSC - 50 75 
4 SSC - 100 
5 Combination - 50 
6 Combination -100 

50 
150 
450 

In order to gain a full understanding of the variation and standard deviations involved in 

the modeling process, 40 separate computer runs are generated for each cell. This results 

in 54 X 40 = 2160 runs of the model in order to generate the necessary data to complete 

the experimental design and establish statistical results. The conclusions for the study are 

then formed from these experimental results. 



Results 

Solutions for the Munitions Pre-Positioning problem are generated using a C++ 

computer program (Appendix B) running on an AMD Athlon 4 processor with 256 MB 

of RAM and operating at 900 MHz. The program recorded the minimum cost solution in 

eight individual coverage ranges for each of the forty runs for each experimental cell. 

The variety of solutions and the tradeoff between the two objectives can be seen in the 

efficient frontiers mapped for each problem. An efficient frontier of the solutions for 

Problem 1 is seen in Figure 7. 
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Figure 7. Efficient Frontier - Problem 1 
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The efficient frontiers developed for each of the remaining five problems are provided in 

Appendix C. 

The solution from each run which was deemed to be the best solution in terms of 

overall improvement of the two objectives is used in the statistical analyses to answer the 

research questions for the study. The two objectives are equally weighted in determining 

the best solution from each run by simply averaging the percentage improvement for each 

objective. This equal weighting of objectives is used as a baseline of comparison and 

does not imply that the best method for comparing cost and coverage for munitions 

positioning should be weighted in this manner. Instead, individual decision makers must 

make their own decision regarding the proper weighting of cost and coverage objectives. 

The use of different weightings provides an additional opportunity for future research 

Simultaneous Improvement of Cost and Coverage 

The first research question in this dissertation addresses the ability of the program 

to find solutions that improve both cost and coverage in comparison to the initial solution 

for the problem. During the experimental runs, the program was able to find many 

individual solutions that simultaneously improve both objectives. In recording the 

success of the model to find improved solutions, the number of runs that found a solution 

that improved both objectives is recorded, as well as the average percentage improvement 

of the solution when the two objectives are weighted equally. In addition, the solution 

which provides the highest weighted improvement and simultaneously improves both 

objectives is considered the best solution for the experimental cell. It should again be 
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noted that the initial solution used in the study is based on a validated pre-positioning set 

used by the Air Force during a congressionally mandated war game conducted at 

Maxwell AFB, AL during November 1999. Therefore, improvements to the initial 

solution should not be considered trivial and should be considered a sincere estimate of 

improvement over current methods of positioning. The number of improved solutions 

and the best solutions for Problem 1 are provided in Table 5. 

Table 5 

Simultaneous Improvement of Objectives - Problem 1 
Initial Solution (Cost-$64.59 million, Coverage- 5385 miles) 

Factors Best Solution Found 

Transfer    Reset Number      Ave % 
Size Frequency   Improved    Improved 

Coverage  Cost Weighted % 
Improve 

5 50 27 .399 5308 64.05 1.13 

150 26 .173 5356 64.16 .61 
450 24 .138 5369 64.22 .43 

25 50 32 1.814 3621 64.59 16.39 

150 18 1.178 5176 64.11 2.69 

450 16 .683 5270 63.93 1.58 

75 50 26 5.891 3604 57.33 22.17 

150 21 7.735 2510 46.75 40.51 

450 20 14.293 2115 47.82 43.35 

For each of the nine experimental cells, approximately twenty to thirty of the forty runs 

found a solution that simultaneously improved the two objectives in comparison to the 

initial solution for Problem 1. However, the quality of the best solutions varied greatly. 
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For a transfer size of 5, the best solutions made only small improvements of 

approximately one percent or less. For a transfer size of 25 and a reset frequency of 50, 

the best solution resulted in an improvement of approximately 16.39%; however, the bulk 

of this improvement resulted from improvement in only the coverage objective. 

Solutions with a transfer size of 75 resulted in greatly improved solutions in comparison 

to the initial solution, and improvements were made to both objectives. A transfer size of 

75 and a reset frequency of 450 found the best solution for Problem 1 with a weighted 

improvement of 43.35%. 

The solutions for Problem 2 are Usted in Table 6. Similar to the first problem. 

Problem 2 is based on the occurrence of Major Theater Wars (MTW); however. 

Table 6 

Simultaneous Improvement of Objectives - Problem 2 
Initial Solution (Cost-$128.43 million. Coverage- 5385 miles) 

Factors Best Solution Found 

Transfer    Reset Number      Ave % 
Size Frequency   Improved    Improved 

Coverage  Cost Weighted % 
Improve 

5 50 10 .100 5379 128.07 .19 
150 10 .085 5373 128.33 .15 
450 10 .061 5379 128.37 .08 

25 50 9 .432 5299 127.98 .97 
150 8 6.69 2597 126.69 26.57 

450 14 19.46 2664 121.77 27.85 

75 50 16 6.09 2400 123.80 29.52 

150 27 24.29 2286 108.18 36.66 

450 39 31.80 2527 99.75 37.70 
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it includes 100 combat locations. The results indicate the difficulty of obtaining 

simultaneous improvement to the objectives for this larger problem. With a transfer size 

of 5, only ten of the forty runs find a solution that improves both objectives and the 

improvement is almost negligible. A transfer size of 25 does slightly better and with a 

reset frequency of 150 and 450, solutions are found that improve the coverage objective 

by as much as 50%. However, the number of improved solutions and the size of 

improvement increase greatly when the transfer size is set to 75.  The best solution for 

Problem 2 is found with a transfer size of 75 and a reset frequency of 450, and it results 

in a weighted improvement over the initial solution of 36.66%. 

Table 7 

Simultaneous Improvement of Objectives - Problem 3 
Initial Solution (Cost-$28.27 million, Coverage- 5385 miles) 

Factors Best Solution Found 

Transfer    Reset Number      Ave % 
Size Frequency   Improved    Improved 

Coverage  Cost Weighted % 
Improve 

5 50 40 22.61 3472 24.27 24.84 

150 40 21.83 3603 23.59 24.83 

450 39 18.42 3865 23.29 22.93 

25 50 40 27.85 3351 21.48 30.89 

150 40 30.78 3004 20.49 35.86 

450 40 37.37 2596 14.75 37.37 

75 50 40 28.06 2594 20.36 39.90 

150 40 35.19 2594 15.63 48.27 

450 40 43.90 1596 13.37 61.54 
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The smallest problem in terms of initial cost is Problem 3. This problem is based on 

small scale contingencies and only contains fifty possible combat locations. In almost 

every experimental run for this problem, a solution was found that simultaneously 

improves both objectives. However, the solutions generated using a higher transfer size 

result in the highest level of improvement. For Problem 3, the best solution is found 

using a transfer size of 75 and a reset frequency of 450. This solution achieved a 

weighted improvement of 61.54% in comparison to the initial solution. 

The results for Problem 4 again indicate the difficulty of finding simultaneously 

improved solutions using a smaller transfer size. Although a transfer size of 5 had as 

Table 8 

Simultaneous Improvement of Objectives - Problem 4 
Initial Solution (Cost-$59.4I million, Coverage- 5385 miles) 

Factors Best Solution Found 

Transfer Reset Number Ave% Coverage Cost Weighted % 
Size Frequency Improved Improved Improve 

5 50 31 .325 5326 58.89 .99 
150 19 .390 5355 58.69 .89 
450 14 .373 5349 59.05 .64 

25 50 29 3.327 2946 52.69 28.30 
150 25 1.951 5128 56.63 4.73 
450 15 4.063 3021 55.04 25.63 

75 50 34 11.303 2490 51.96 33.15 
150 24 8.946 2168 47.26 40.10 
450 17 17.596 2143 52.74 35.72 
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many as 31 runs with a simultaneously improved solution, the average amount of 

improvement is less than one percent. Similarly the best solutions found for this transfer 

size result in a weighted improvement of the two objectives of less than one percent. 

However, as the transfer size increases, the average improvement of the solutions also 

increases. The greatest average improvement is 17.596% for a transfer size of 75 and a 

reset frequency of 450. In addition, the best solution for problem 4 is found using a 

transfer size of 75 and a reset frequency of 150, which results in a weighted improvement 

of the two objectives of 40.10%. 

The results of Problem 5 indicate each of the three transfer levels are similarly 

effective in finding improved solutions in comparison to the initial solution. 

Table 9 

Simultaneous Improvement of Objectives - Problem 5 
Initial Solution (Cost-$47.52 million, Coverage- 5385 miles) 

Factors Best Solution Found 

Transfer    Reset Number      Ave % 
Size Frequency   Improved    Improved 

Coverage  Cost Weighted % 
Improve 

5 50 39 13.515 3486 39.65 25.92 

150 35 6.534 3573 39.73 25.03 

450 25 5.962 3737 40.42 22.77 

25 50 35 21.251 2599 42.92 30.70 

150 33 16.930 2729 40.14 32.42 

450 31 16.641 2759 29.31 43.55 

75 50 39 25.625 2658 33.47 40.10 

150 37 29.654 2599 27.81 46.60 

450 38 34.084 2625 22.47 51.99 
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For each experimental cell for this problem, at least 25 of the 40 runs were able to find at 

least one solution that simultaneously improved both objectives. The largest average 

improvement for a cell was 34.084% for a transfer size of 75 and a reset frequency of 

450. Similarly, the best solution for Problem 5 was found with the same parameter 

settings and resulted in a weighted improvement of 51.99% in comparison to the initial 

solution. 

The results for the last problem indicate it may be the most difficult for finding 

simultaneously improved solutions. Both transfer sizes of 5 and 25 had only between ten 

and twenty runs with a solution that improved both objectives. 

Table 10 

Simultaneous Improvement of Objectives - Problem 6 
Initial Solution (Cost-$91.68 million. Coverage- 5385 miles) 

Factors Best Solution Found 

Transfer    Reset Number      Ave % 
Size Frequency   Improved    Improved 

Coverage  Cost Weighted % 
Improve 

5 50 11 .194 5325 91.58 .61 
150 12 .130 5367 91.43 .31 
450 10 .146 5379 91.24 .30 

25 50 19 .995 5140 89.67 3.37 

150 12 .413 5379 89.68 1.15 

450 13 .460 5325 90.94 .96 
75 50 15 4.235 2678 87.48 27.43 

150 16 8.761 2266 88.06 30.93 

450 35 31.422 2389 67.38 41.07 
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In addition, the average improvement for all of the solutions for these two levels was less 

than one percent in comparison to the initial solution. In addition, the best solution found 

using a transfer size of 25, only resulted in a simultaneously weighted improvement of 

3.37%. The transfer size of 75 far outweighed the results of the other levels in terms of 

number of runs finding an improved solution and the magnitude of this improvement. 

More specifically, the experimental cell with a transfer size of 75 and a reset frequency of 

450 found an simultaneously improved solution 39 out of 40 runs with an average 

improvement of 31.422%. In addition, the best solution for problem six was found with 

these parameter settings resulting in simultaneous weighted improvement of 41.07% in 

comparison to the initial solution for the problem. 

Effect of Problem Number 

The second research question asks whether the problem type is a significant factor 

in determining the cost and coverage of the solutions generated by the model. It was 

believed prior to the study that this factor would be significant since the demands for 

each problem differ in the size, location and number of combat locations. The question is 

analyzed by conducting a three factor Multiple Analysis of Variance (MANOVA) for the 

best result obtained fi-om each of the forty runs of each experimental cell with equal 

weighting of the two dependent variables. The results for this MANOVA indicate a 

significant difference for the problem type with Wilks' A <0.023, F(10, 4210)=2345.57, 

with a corresponding p-value < 0.0001. In addition, the results for this three factor 

analysis also indicate significant differences for the transfer size (Wilks' A <0.366, 
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F(4,4210) =687.313), and reset frequency (Wilks' i <0.850, F(4,4210)=88.914), both 

with p-values< 0.0001. However, the analysis also indicates that the three way 

interaction of problem type, reset frequency, and transfer size is significant with Wilks' 

X <nM, F(40,4210)=16.952 and a p-value< 0.0001. In addition, each of the three two- 

factor interactions is significant with p-values < 0.0001. 

Table 11 

3-Factor Analysis of Variances (ANOVAs)for Cost and Coverage 

Source Dependent Variable df F P^ 

Intercept Cost 1 258866.26 .0001 
Coverage 1 96868.63 .0001 

Problem Cost 5 13037.06 .0001 
Coverage 5 104.93 .0001 

Transfer Cost 2 233.85 .0001 
Coverage 2 998.63 .0001 

Reset Cost 2 180.08 .0001 
Coverage 2 13.78 .0001 

Problem*Transfer*Reset       Cost 20 25.13 .0001 
Coverage 20 17.40 .0001 

Problem*Transfer Cost 10 39.54 .0001 
Coverage 10 29.50 .0001 

Problem*Reset Cost 10 34.81 .0001 
Coverage 10 16.01 .0001 

Transfer*Reset Cost 4 43.83 .0001 
Coverage 4 187.02 .0001 

Error Cost 
Coverage 

2106 
2106 

Closer examination of the three-factor ANOVA's for each dependent variable in Table 11 

reveals the main effect and interactions are similarly significant for each dependent 
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variable. Table 12 includes the mean values for cost and coverage for each of the six 

problems.  The results in Tables 11 and 12 appear to indicate a high degree of difference 

for the cost associated with each problem and a smaller, yet still significant (F(5)=104.93, 

p< .0001), difference in the coverage values for each problem. 

Table 12 

Cost and Coverage for Individual Problems 

Problem Cost ($millions) Coverage (miles) 

1 73.70(10.10) 3818.46(1194.86) 
2 138.73 (13.96) 3099.68 (455.04) 
3 22.18(3.30) 3355.44(379.95) 
4 68.59(9.19) 3563.31(1134.96) 
5 45.90 (8.37) 3302.48 (693.04) 
6 105.80(10.94) 3135.02(694.29) 

However, additional interpretation and testing of the factors would require further 

understanding of the nature of the interactions between the three factors and the 

development of confidence intervals for each of the fifty four treatment cells for both 

dependent variables. Therefore, further analysis for research questions three and four is 

conducted using separate two-factor MANOVAs for each of the six problems. In order 

to account for having several tests, the level of significance for individual tests is adjusted 

accordingly using the Bonferoni inequality in order to maintain a high level of 

significance for the entire family of tests. 
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Transfer Size and Reset Frequency 

The third and fourth research questions ask whether or not the transfer size and 

reset frequency used in the search make a significant difference in determining the cost 

and coverage of the solutions. It was beUeved prior to the study that the number of 

weapons relocated during each inventory transfer would make a significant difference in 

the quality of the final solutions. In addition, it was believed that how often the search is 

reset back to the best coverage solution would also play a significant role in finding 

improved solutions in comparison to the initial solution. In order to analyze these 

questions, a two factor MANOVA is conducted for each of the six problems on the best 

solution from each run based on equal weighting of the two dependent variables. The 

results of the Multivariate tests for all six problems are found in Table 13. The results of 

these tests are significant for seventeen of the eighteen tests, with an individual 

significance level of « = .005 and a family significance level a < .09 as determined by 

the Bonferoni inequality. Only the multivariate test for the reset frequency in Problem 5 

appears to be insignificant. The results of these tests justify the exploration of the 

individual 2-Factor ANOVAs for each dependent variable. This analysis is conducted 

separately on each problem in order to fully understand the nature of the interactions and 

applicable main effects for each problem. General comparisons of the results between 

problems are made at the end of this chapter and again in the Conclusion chapter. 
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Table 13 

Multivariate Tests 

Problem Effect Wilks' Z df F P^ 

1 Transfer .319 4/700 134.71 .0001 
Reset .747 4/700 27.42 .0001 
Transfer*Reset .455 8/700 42.17 .0001 

2 Transfer .156 4/700 267.86 .0001 
Reset .375 4/700 110.76 .0001 
Transfer*Reset .504 8/700 35.69 .0001 

3 Transfer .294 4/700 147.56 .0001 
Reset .484 4/700 76.65 .0001 
Transfer*Reset .567 8/700 28.73 .0001 

4 Transfer .353 4/700 119.45 .0001 
Reset .934 4/700 6.10 .0001 
Transfer*Reset .705 8/700 16.73 .0001 

5 Transfer .429 4/700 92.20 .0001 
Reset .966 4/700 3.10 = .0150 
Transfer*Reset .708 8/700 16.52 .0001 

6 Transfer .243 4/700 179.91 .0001 
Reset .564 4/700 58.00 .0001 
Transfer*Reset .476 8/700 39.32 .0001 

Problem 1 Analysis. Following a significant multivariate test, the results for the 

individual ANOVAs is explored for the first problem, the MTW scenario with 50 combat 

locations. For this analysis, there are two factors and one interaction term for each 

dependent variable resulting in a family significance level of a < .03, with a =.005 for 

each individual test. The results of the ANOVA for Problem 1 are listed in Table 14. In 

this analysis, the interaction term of the two factors is significant for both dependent 

variables. Therefore, the difference in the dependent variables for each factor is subject to 
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the corresponding level of the other factor. In order to understand this relationship, the 

confidence intervals for the individual treatment means are developed using the 

Bonferoni procedure and multiplier for all potential intervals. 

Table 14 

2-Factor ANOVAs of Cost and Coverage for Problem 1 

Source Dependent Variable df F P^ 

Intercept Cost 1 32936.86 .0001 
Coverage 1 11597.05 .0001 

Transfer Cost 2 9.90 .0001 
Coverage 2 205.59 .0001 

Reset Cost 2 30.52 .0001 
Coverage 2 40.78 .0001 

Transfer*Reset Cost 4 46.21 .0001 
Coverage 4 72.17 .0001 

Error Cost 
Coverage 

351 
351 

These intervals are used to determine which means are significantly different from the 

others with a = .005 and a family significance level a < .09 for the eighteen intervals for 

the problem. The results of this comparison and a relative ranking of the intervals in 

terms of desirability are listed in Table 15. In analyzing these results, it is difficult to tell 

if any one transfer size or reset frequency is more efficient at finding improved solutions 

to the problem. However, some general observations can be made. First, the four highest 

ranking treatment cells for the cost dependent variable have reset frequencies of either 
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450 or 150. This seems logical since the search is redirected to the best coverage value 

fewer times in these cells. 

Table 15 

Treatment Mean Ranks and Intervals for Problem 1 

DV Cost Coverage 

Rank Transfer Reset Interval Transfer Reset Interval 
Size Freq. Size Freq. 

1 5 450 (61.067,67.950) 75 450 (2263.36, 2864.35) 
2 25 150 (61.610, 68.494 75 150 (2435.04,3036.04) 
3 75 450 (64.497,71.380) 25 450 (2941.74,3542.73) 
4 5 150 (67.464,74.347) 75 50 (2975.75, 3576.74) 
5 75 50 (70.766, 77.649) 25 50 (3254.38, 3855.37) 
6 75 150 (73.230,80.114) 5 50 (3303.69, 3904.68) 
7 25 50 (76.251, 83.134) 5 150 (4479.67, 5080.67) 
8 5 50 (77.059, 83.942) 25 150 (4926.20, 5527.19) 
9 25 450 (80.399, 87.282) 5 450 (5081.79,5682.78) 

Next, three out of the top four cells for the coverage dependent variable are found using a 

transfer size of 75. More surprisingly, the three most desirable combinations for the 

Cover dependent variable are also found using reset frequencies of either 150 or 450. 

Finally, it should be noted that many of the confidence intervals overlap with a =.005 

and individual differences between the treatment means is therefore considered 

insignificant. However, for the Cost dependent variable, the highest ranking combination 

(5,450) is significant in comparison to the treatments ranked 5-9, and for the coverage 
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dependent variable, the highest ranking combination (75,450) is significant in comparison 

to each of the other treatment cells ranked 3-9. Following, the analysis of each problem, 

the aggregate ranking of the treatment cells for all of the six problems in the study will be 

considered. 

Problem 2 Analysis.  Problem 2 is based on the occurrence of Major Theater 

Wars (MTW) with 100 combat locations and is the largest problem in terms of cost for 

the initial solution. In Table 13, the multivariate tests for Problem 2 are significant for 

each of the two factors and the interaction term with a = .005 and p< .0001 for each of 

the three individual tests. Following the significant multivariate tests, the individual 2- 

Factor ANOVAs are investigated in order to determine if significant differences are 

present for the different levels of transfer size and reset frequency used in the search for 

improved values of cost and coverage. The results of the ANOVAs for Problem 2 are 

displayed in Table 16. The results for the two factors and interaction term are significant 

with p < .0001 for each dependent variable using a family significance level of « < .03 

and a =.005 for each individual test. Similar to Problem 1, the interaction term of the 

two factors is significant for both dependent variables. Therefore, the difference in the 

dependent variables for each factor is subject to the corresponding level of the other 

factor, and the confidence intervals for the individual treatment means are developed 

using the Bonferoni procedure. These intervals determine which means are significantly 

different from the others with a = .005 and a family significance level a < .09. 
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Table 16 

2-Factor ANOVAs of Cost and Coverage for Problem 2 

Source Dependent Variable df F P^ 

Intercept Cost 1 114927.45 .0001 
Coverage 1 105644.22 .0001 

Transfer Cost 2 166.92 .0001 
Coverage 2 806.32 .0001 

Reset Cost 2 128.96 .0001 
Coverage 2 37.25 .0001 

Transfer*Reset Cost 4 54.63 .0001 
Coverage 4 58.06 .0001 

Error Cost 
Coverage 

351 
351 

The results of the comparison and the ranking of the intervals in terms of desirability are 

listed in Table 17. Analysis of the results from Table 17 indicate a clearer picture of 

which combinations of transfer size and reset frequency are dominant in finding 

improved solutions to the initial solution for the problem. For instance, the treatment cell 

with a reset frequency of 450 and a transfer size of 75 is able to find significant resuhs in 

comparison to all other combinations for the cost dependent variable and is the highest 

ranking in terms of coverage. In addition, a transfer size of 75 is used in the top three 

highest ranking cells for the coverage dependent variable and for the top two highest 

ranking cells for Cost. Additionally, a transfer size of 5 is used in all three of the lowest 

ranking treatment cells for the dependent variable Coverage. The reset frequency of 450 

is effective when used with a larger transfer size; however, when combined with a 
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transfer size of 5 it results in the lowest ranking combination for both dependent 

variables. 

Table 17 

Treatment Mean Ranks and Intervals for Problem 2 

DV Cost Coverage 

Rank Transfer Reset  Interval Transfer Reset Interval 
Size Freq • Size Freq. 

1 75 450 (107.701,114.637) 75 450 (2567.89,2729.53) 
2 75 150 (127.010,133.945) 75 150 (2599.90, 2761.54) 
3 25 450 (129.377, 136.313) 75 50 (2741.53,2903.17) 
4 25 150 (134.789, 141.724) 25 150 (2829.10,2990.74) 
5 75 50 (142.312,149.248) 25 50 (2880.38, 3042.02) 
6 5 50 (143.391,150.327) 25 450 (2924.32, 3085.96) 
7 5 150 (143.653,150.588) 5 50 (3249.92,3411.56) 
8 25 50 (144.376,151.311) 5 150 (3463.29, 3624.93) 
9 5 450 (144.712,151.648) 5 450 (3913.39,4075.03) 

Problem 3 Analysis.   Problem 3 is a Small Scale Contingency problem with 50 

combat locations and is the smallest problem in terms of cost for the initial solution. The 

results for the multivariate tests for Problem 3 are significant for each of the two factors 

and the interaction term with a = .005 and p < .0001 for each of the individual tests. 

Significant multivariate tests justify the investigation of the individual 2-Factor ANOVAs 

in order to determine if significant differences are present for the different levels of 
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transfer size and reset frequency used by the search program to find improved solutions 

to the problem. The results of the ANOVAs for Problem 2 are displayed in Table 18. 

Table 18 

2-Factor ANOVAs of Cost and Coverage for Problem 3 

Source Dependent Variable df F P^ 

Intercept Cost 1 67266.28 .0001 
Coverage 1 80155.29 .0001 

Transfer Cost 2 324.99 .0001 
Coverage 2 234.22 .0001 

Reset Cost 2 148.30 .0001 
Coverage 2 4.30 .0140 

Transfer*Reset Cost 4 46.08 .0001 
Coverage 4 49.21 .0001 

Error Cost 
Coverage 

351 
351 

Again, the results for the ANOVA interaction terms for each dependent variable 

are significant withp<.0001 using a family significance level of a < .03 and a =.005 

for each individual test. Therefore, the confidence intervals for the individual treatment 

means are developed using the Bonferoni procedure. These intervals are used to 

determine the significance of the mean differences v^'ith a = .005 and a family 

significance level a < .09. The results of the comparison and the ranking of the intervals 

in terms of desirability are listed in Table 19. The results of the transfer size and reset 

frequency treatment cells for Problem 3 show consistent results in comparison to the first 

two problems. 
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Table 19 

Treatment Mean Ranks and Intervals for Problem 3 

DV Cost Coverage 

Rank Transfer Reset Interval Transfer Reset Interval 
Size Freq. Size Freq. 

1 75 450 (16.152,17.602) 75 450 (2726.23,2927.11) 
2 25 450 (17.684,19.134) 75 150 (2924.03,3124.91) 
3 75 150 (20.040,21.489) 25 450 (3138.45, 3339.33) 
4 25 150 (20.899, 22.349) 25 150 (3235.23,3436.11) 
5 75 50 (22.373, 23.823) 75 50 (3248.11,3488.99) 
6 25 50 (22.458,23.907) 25 50 (3254.57,3455.45) 
7 5 150 (24.394,25.844) 5 50 (3405.79, 3606.67) 
8 5 50 (24.410, 25.860) 5 150 (3504.48, 3705.35) 
9 5 450 (24.708, 26.158) 5 450 (3858.14,4059.02) 

The combination of 450 for reset frequency and 75 for transfer size is the highest ranking 

for both dependent variables. The mean interval for this treatment is significant in 

comparison to the other eight treatments for the Cost dependent variable and is 

significant in comparison to all except one of the other treatments for Coverage with 

a =.005 . Transfer sizes of 75 and 25 are able to achieve improved solutions in 

comparison to combinations using a transfer size of 5. This relationship is the clearest for 

the Cost dependent variable where all combinations using a transfer size of 25 and 75 are 

significant in comparison to the three cells using a transfer size of 5. The lowest results 

for the problem are once again found using the treatment with transfer size 5 and reset 

frequency 450. The reset frequency factor appears to be the least significant; especially 
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for the Coverage dependent variable where the main effect is not significant with 

p<m4. 

Problem 4 Analysis.   Problem 4 is a Small Scale Contingency problem with 100 

combat locations and is the second smallest problem in terms of cost for the initial 

solution. From Table 13, the results for the multivariate tests for Problem 4 are 

significant for each of the two factors and the interaction term with a = .005 and 

p< .0001 for each of the three individual tests. The results of the ANOVAs for Problem 4 

are displayed in Table 20. In Table 20, the results of the interaction terms for each 

dependent variable are significant withp<.0001 using a family significance level of a < 

.03 and a =.005. In addition, the main effect of reset frequency for the Coverage 

dependent variable is insignificant with p< .7840. 

Table 20 

2-Factor ANOVAs of Cost and Coverage for Problem 4 

Source Dependent Variable df F P^ 

Intercept Cost 1 27832.10 .0001 
Coverage 1 7277.08 .0001 

Transfer Cost 2 38.55 .0001 
Coverage 2 134.54 .0001 

Reset Cost 2 9.00 .0001 
Coverage 2 .243 = .7840 

Transfer*Reset Cost 4 12.93 .0001 
Coverage 4 28.91 .0001 

Error Cost 
Coverage 

351 
351 
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In order to understand the nature of the interactions between the two factors, the 

confidence intervals for the individual treatment means are created using the Bonferoni 

procedure. These intervals determine the significance of the mean differences with a = 

.005 and a family significance level a < .09. The ranking of the intervals in terms of 

desirability are listed in Table 21 and the results for this problem contain differences to 

previous problems worth noting. First, the combination of transfer size 5 and reset 

frequency 450 achieves the highest ranking in terms of the Cost dependent variable 

despite the fact that it had been a poor choice for previous problems. Although, this 

combination did achieve the highest ranking it should be noted that its interval is not 

significantly different than the next three highest ranking combinations. 

Table 21 

Treatment Mean Ranks and Intervals for Problem 4 

DV Cost Coverage 

Rank .   Transfer Reset Interval Transfer Reset Interval 
Size Freq. Size Freq. 

1 5 450 (57.240, 64.209) 75 450 (1969.83, 2677.82) 
2 75 50 (59.983,66.952) 75 150 (2599.09, 3307.08) 
3 75 450 (61.054,68.023) 25 150 (2770.75, 3478.74) 
4 5 150 (63.063,70.032) 25 450 (2877.80,3585.79) 
5 75 150 (65.652,72.620) 75 50 (2898.05, 3606.04) 
6 25 50 (66.280,73.249) 5 50 (3358.29,4066.28) 
7 5 50 (68.384,75.352) 25 50 (3375.84,4083.84) 
8 25 450 (70.987,77.955) 5 150 (4149.00,4856.99) 
9 25 150 (73.331, 80.300) 5 450 (4885.16, 5593.15) 
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In addition, the corresponding Coverage interval for this treatment cell is the lowest 

ranking of the nine treatments and is significantly inferior to all other treatments for the 

Coverage dependent variable. Therefore, it is believed that v^'hile this treatment v^'as able 

to achieve its best solutions with low costs, it did so only while achieving poor coverage 

values. A similar result for this combination is seen in the results for Problem 1 where an 

improved Cost value is achieved, while the Coverage value for the treatment is the worst 

found by any combination in the study. Next, unlike the previous two problems, the 

overlapping of confidence intervals for Problem 4 is quite prevalent for the Cost 

dependent variable making it difficult to determine if any one treatment is clearly 

superior in finding improved solutions to the problem. However, the results for the 

Coverage dependent variable for Problem 4 are consistent with previous problems and 

the combination of transfer size 75 and reset frequency 450 is significantly lower than 

seven of the eight other treatment cells. Similarly, a transfer size of 5 appears to be 

lowest ranking level in terms of obtaining improved Coverage values for Problem 4. 

Problem 5 Analysis.   Problem 5 contains 50 combat locations and is a 

combination of Major Theater War scenarios and Small Scale Contingencies. The results 

for Problem 5 are different in comparison to each of the other five problems in the study 

resulting in slightly different presentation of results. First, only two of three multivariate 

tests for problem 5 are significant. The main factor effect for Transfer size and the 

interaction term of the two factors are significant with a = .005 and p < .0001. However, 

the multivariate test for the reset frequency is insignificant with p< .015 and a = .005. 

The results of the individual ANOVAs for Problem 5 are displayed in Table 22. Analysis 
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of the interaction terms results in a significant outcome for the Coverage dependent 

variable withp<.0001 using a family significance level of « < .03 and a =.005. The 

individual treatment differences for this dependent variable are explored using the 

Table 22 

2-Factor ANOVAs of Cost and Coverage for Problem 5 

Source Dependent Variable df F P^ 

Intercept Cost 1 13983.32 .0001 
Coverage 1 17325.51 .0001 

Transfer Cost 2 47.87 .0001 
Coverage 2 141.75 .0001 

Reset Cost 2 2.99 = .0510 
Coverage 2 3.63 = .0280 

Transfer*Reset Cost 4 2.61 = .0350 
Coverage 4 29.79 .0001 

Error Cost 
Coverage 

351     • 
351 

Bonferoni procedure similar to previous problems. However, the interaction term for the 

Cost dependent variable is insignificant with p< .0350 and a =.005.   Therefore, the 

main effects are analyzed for the Cost dependent variable. The reset frequency main 

effect is insignificant with p < .0510 and a =.005, therefore no further analysis is required 

for this factor. However, the transfer size main effect is significant with p< .0001 and 

a =.005. Tukey's pairwise comparisons are displayed in Table 23 for the transfer size 

differences for Problem 5 using a =.02 and a family a =.06 for the three confidence 
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intervals. These comparisons show that a transfer size of 75 is able to obtain costs 

between $4,558 million and $9,658 million lower than a transfer size of 25, regardless of 

which reset frequency is used to solve Problem 5. 

Table 23 

Tukey Pairwise Comparisons of Cost ($million) for Transfer Size in Problem 5 

Transfer Size 1 Transfer Size 2 Mean Interval of Mean    p-value< 
Difference      Difference 

5 25 1.644 (-9.065,4.194)        =.1940 
5 75 8.752 (6.202,11.302) .0001 

25 1.644 
75 8.752 
75 7.108 25 75 7.108 (4.558,9.658) .0001 

Also, a transfer size of 75 is able to find costs between $6,202 miUion and $11,302 

million lower than a transfer size of 5 for any reset frequency used to find solutions to 

Problem 5. No significant difference is evident between transfer sizes 5 and 25. 

The individual treatment means and their confidence intervals as determined by 

the Bonferoni procedure are displayed for the Coverage dependent variable in Table 24. 

The results of the treatment mean analysis for the Coverage dependent variable for 

Problem 5 are consistent with the analysis for previous problems. The intervals are 

determined with a = .005 for each individual interval and the combination of 75 for the 

transfer size and 450 for the reset frequency is again the highest ranking treatment. 
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Table 24 

Treatment Mean Ranks and Intervals of Coverage for Problem 5 

Rank Transfer Size Reset Frequency Interval 

1 75 450 (2307.02, 2732.28) 
2 75 150 (2587.68, 3012.94) 
3 25 50 (2941.55, 3366.80) 
4 75 50 (2953.80, 3379.06) 
5 25 450 (3035.15,3247.78) 
6 25 150 (3057.50,3482.76) 
7 5 50 (3274.01, 3699.27 
8 5 150 (3441.85, 3867.10) 
9 5 450 (4210.06,4635.31) 

This combination is significant in comparison to seven of the eight other possible 

treatments used for finding solutions to the problem. In addition, the transfer size of 5 is 

used in the three least preferred combinations and the combination of 5 for transfer size 

and 450 for reset frequency is the least favorable combination and is significantly higher 

than each of the other eight combinations with a = .005 and the family significance level 

a = .09. 

Problem 6 Analysis.   Problem 6 includes 100 combat locations and is a 

combination of MTW and SSC scenarios. From Table 13, the results for the multivariate 

tests for Problem 6 are significant for each of the two factors and the interaction term 

with a = .005 and p<.0001 for each of the individual tests. The results of the ANOVAs 

for Problem 6 are displayed in Table 25. The interaction terms for each dependent 
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variable are significant with p< .0001 using a family significance level of « < .03 and 

a =.005. 

Table 25 

2-Factor ANOVAs of Cost and Coverage for Problem 6 

Source Dependent Variable df F P^ 

Intercept Cost 1 79958.88 .0001 
Coverage 1 25837.60 .0001 

Transfer Cost 2 84.35 .0001 
Coverage 2 320.43 .0001 

Reset Cost 2 124.99 .0001 
Coverage 2 22.03 .0001 

Transfer*Reset Cost 4 20.68 .0001 
Coverage 4 56.95 .0001 

Error Cost 
Coverage 

351 
351 

In order to understand the interaction between the two factors, the confidence intervals 

for the individual treatment means are developed using the Bonferoni procedure. These 

intervals determine the significance of the mean differences with a = .005 and a family 

significance level a < .09. The intervals are ranked in terms of desirability in Table 26. 

The results of the treatment intervals are consistent with previous problems, and the 

combination of transfer size 75 and reset frequency 450 is the highest ranking for both 

dependent variables. This treatment is significant in comparison to all other 

combinations for the Cost dependent variable and is significant in comparison to all 
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except one other treatment for the Coverage dependent variable with a = .005 for each 

interval. 

Table 26 

Treatment Mean Ranks and Intervals for Problem 6 

DV Cost Coverage 

Rank Transfer Reset Interval Transfer Reset Interval 
Size Freq. Size Freq. 

1 75 450 (81.263, 87.604) 75 450 (2298.78, 2629.35) 
2 75 150 (100.268,106.609) 75 150 (2392.21, 2722.79) 
3 5 450 (101.087,107.429) 25 50 (2723.88,3054.46) 
4 25 450 (101.766,108.118) 25 150 (2744.15, 3074.72) 
5 25 150 (104.810,111.152) 75 50 (2799.72, 3130.30) 
6 75 50 (105.729,112.071) 25 450 (2815.55,3311.41) 
7 5 150 (107.652,113.994) 5 50 (3125.51, 3456.09) 
8 5 50 (109.468,115.809) 5 150 (3483.92, 3814.49) 
9 25 50 (111.577,117.919) 5 450 (4343.89,4674.47) 

In addition, for the Coverage dependent variable the transfer size of 5 is present in the 

three lowest ranking combinations and a reset frequency of 450 and transfer size of 5 

obtains a coverage value that is significantly less desirable than all other combinations. 

Comparison of Treatment for All Problems. Further understanding of the 

ability of each combination of transfer size and reset frequency to obtain improved 

solutions for the six problems is explored by creating an aggregate ranking of the 

combinations across the six problems. Although some information is admittedly lost in 
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this non-parametric analysis, this method gives the average ability of the treatment to 

obtain the most desirable results in terms of cost and coverage for all six problems. It is 

intended to aid in the analysis of how desirable each combination is in obtaining 

improved solutions for both objectives. The results of the aggregate ranking are listed in 

Table 27 and several trends seen in individual problems are confirmed through this 

analysis. First, the combination of transfer size 75 and 450 is clearly dominant in 

comparison to the other treatments. This combination achieves an aggregate ranking of 

1.67 for the Cost variable and is the top selection in all six problems for coverage. 

Table 27 

Average Rank of Treatment Means for all Problems 

Rank Transfer Reset Cost Coverage 
Size Frequency Ave Rank Ave Rank 

1 75 450 1.67 1.00 
2 75 150 3.33 2.00 
3 75 50 4.33 4.33 
4 25 450 5.33 4.50 
5 25 150 5.17 4.83 
6 25 50 6.67 4.83 
7 5 450 5.17 9.00 
8 5 150 6.33 7.83 
9 5 50 7.00 6.67 

In addition, the other two combinations using a transfer size of 75 achieve the next 

highest rankings for both the Cost and Coverage variables. This separation between 

transfer sizes continues for the Coverage dependent variable and the three combinations 
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using a transfer size of 25 achieves average ranks below those with 75 and above those 

using 5. This clear separation in ranks is not as evident for different levels of reset 

frequency or for the lower ranking cost combinations. Continued comparison of all of 

the results from this chapter as they relate to the research questions for the study is 

continued in the Conclusions chapter. 



Conclusions 

Discussion of the results as they pertain to each individual research question is 

presented in addition to some general conclusions observed during the study. In addition, 

direction for further research relating to the US Air Force munitions pre-positioning 

problem is presented. 

Simultaneous Improvement of Initial Solutions 

The results indicate that for each of the six problems the search program is able to 

find solutions that simultaneously improve Cost and Coverage in comparison to the 

values for these two dependent variables obtained by the initial solution. However, the 

ability of the program to find improved solutions and the quality of the solutions varies 

between different problems and between the different transfer sizes and reset frequencies 

used in the searches. For instance, the number of runs which attain an improved solution 

differs greatly from one problem to the next. In the smallest problems which contain 

only 50 combat locations (Problems 1,3, and 5), the number of runs with at least one 

solution that simultaneously improves both dependent variables is higher in comparison 

to the three problems with 100 combat locations. For example in Problem 5, the number 

of simultaneously improved solutions ranges from 25 to 39, and in its 100 combat 

location counterpart, Problem 6, the number of improved solutions only ranges from 10 

to 35. Similarly, the number of improved solutions is higher for problems where the 

99 
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initial solution cost is low. For example, in comparing the three problems with 50 

combat locations the number of improved solutions is higher for problems with a low 

initial cost, and the search algorithm is able to find at least one simultaneously improved 

solution for 359 out of 360 runs for the smallest problem. Problem 3. Additionally, 

throughout the six problems analyzed, the number of simultaneously improved solutions 

also varies depending on the value of the transfer size and reset frequency parameters 

within the search. The transfer size of 75 is dominant throughout the six problems. With 

only a few exceptions, the average percentage improvement of solutions found with a 

transfer size of 75 is better than the same percentage found with any other transfer size. 

In addition, the best solution for each problem is found using a transfer size of 75 and 

these solutions range in improvement from 37.70% for Problem 2 to 61.54% for Problem 

3.   Similarly, the reset size plays a role in finding simultaneously improved solutions. 

The unique setting of 75 for transfer size and 450 for reset frequency finds the best 

solution in terms of equally weighted dependent variables for five out of the six 

problems. In addition, this combination also finds the highest average percentage 

improvement for simultaneously improved solutions for all six problems in the study. 

Within the results, it is clear that solutions to each of the six problems are able to 

be obtained that simultaneously improve both Cost and Coverage with as much as 

61.54% improvement in comparison to the initial solution. However, the ability of the 

program to find such improvements appears to depend on how many combat locations 

are contained in a problem and the size of the initial cost of the problem. Regardless of 

the problem number, using a transfer size of 75 and a corresponding reset frequency of 
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450 appears to lead to finding the best simultaneous improved solutions in comparison to 

the initial solution. These results together lead to a positive conclusion for Research 

Question 1, and simultaneously improved solutions in comparison to the initial solution 

are found using the search algorithm developed for the study. 

Problem Configuration 

The three factor MANOVA of Cost and Coverage of the best solutions in terms of 

equal weighting revealed significant results for the three main effects of problem number, 

transfer size and reset frequency. However, since the three-way and two-way interactions 

were also significant; the pairwise differences for the main effects were not explored. 

Instead the remainder of the analysis was divided into six separate two-factor 

MANOVAs in order to understand the main effects and interaction of transfer size and 

reset frequency separately for each individual problem. The mean values of cost and 

coverage for each problem provided Table 12 show that there are significant differences 

in the best cost solutions found by the algorithm for the six problems. It was originally 

thought that since the initial coverage value of each problem was identical that the final 

best coverage values might not differ significantly. However, the results of the three 

factor MANOVA did show significant differences in the coverage values with 

F(5)=104.93 and p<.0001, adding to the conclusion that there are differences in the 

results dictated by the different size and configurations of the six problems. Finally, 

comparison of the mean cost values and coverage values indicate other differences in the 

results for the six problems. Large problems with 100 combat locations and high initial 
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costs (Problems 1,2,4 and 6) make most of their improvement in the coverage variable 

and maintain a mean cost near or above the initial cost for the problem. Therefore for 

these four problems, it appears that the best values find much of their improvement in 

terms of coverage, even though individual solutions can be found that dramatically 

reduce both solutions as seen in the results for Research Question 1. In contrast, 

Problems 3 and 5 have mean cost and coverage values from their best weighted solutions 

that are both smaller than those of the initial solution. 

Finally, based on the results of the three-factor MANOVA, the results of the 

individual ANOVAs for cost and coverage, and the comparison of the mean values in 

Table 12, a positive result is concluded for Research Question 2. The problem size and 

configuration does make a significant difference in the best cost and coverage values able 

to be achieved by the search algorithm used in the study. The remaining analysis and 

results for Research Question 3 and 4 are conducted based on the positive result for this 

research question and are analyzed using separate 2-Factor MANOVAs for each 

question. 

Transfer Size 

The results indicate that for each problem the transfer size used by the search 

algorithm makes a significant difference in the quality of the solutions as measured by the 

dependent variables. Cost and Coverage. However, the impact of transfer size differs 

between the problems and the reset frequencies, and is at times much clearer for the 

Coverage dependent variable. 
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The most evident result for transfer size is seen in the Cost dependent variable for 

Problem 5, where the main effect for transfer size is significant v^^ith no interaction effect 

with the reset frequency. In this problem, the Cost of solutions found with a transfer size 

of 75 is $11.30 million to $6.20 million smaller than those found using a transfer size of 

5, and $9.66 million to $4.56 million smaller than those found using a transfer size of 25. 

The significance of transfer size is not as apparent for the Cost dependent variable for 

problems 1 and 4 and no one transfer size appears to be superior in comparison to the 

others for these two problems. However, for problems 2,3 and 6, the larger transfer size 

of 75 again finds significantly improved solutions in comparison to the other transfer 

sizes. In problems 2 and 6, the combination of 75 for transfer size and 450 for reset 

frequency finds Cost values significantly lower than each of the other eight transfer size 

and reset frequency combinations. 

The transfer size of 75 also seems to find improved results in comparison to the 

other two transfer sizes for the Coverage variable. In Table 15 for problem 1, the transfer 

size of 75 is used in three of the top four ranking combinations for Coverage and the 

combination of 75 for transfer size and 450 for reset frequency is significant in 

comparison to seven of the remaining eight combinations for Coverage values. In 

addition, for each of the other five problems, the combination of 75 and 450 is significant 

in comparison to seven of the eight other combinations and only the combination of 75 

and 150 is able to find Coverage values that compete with this treatment. The transfer 

size of 75 is not as favorable when combined with a reset frequency of 50; however for 
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all six problems it is clearly preferred for finding lower Coverage values when using the 

highest reset value. 

The comparison of the aggregate ranks of the different combinations seen in 

Table 29 again highlights the difference made by transfer size. For cost, the three highest 

ranking combinations each use a transfer size of 75 and similarly for Coverage the 

highest three ranking combinations use 75 as the transfer size. Additionally, for the 

coverage variable, each combination using a transfer size of 25 is higher ranking than 

those using a transfer size of 5. Finally, based on the results of the analysis of each 

independent variable and the results of the aggregate ranking of each individual problem, 

a positive conclusion for Research Question 3 is concluded. The transfer size used by the 

search algorithm does make a significant difference in the outcome of the cost and 

coverage values for solutions to the munitions pre-positioning problem. 

The ability of the algorithm to find improved solutions appears to strengthen as 

the transfer size is increased. Therefore, a subsequent question is whether or not the 

improvement will continue outside of the range of transfer sizes chosen for the 

experiment in this study. In order to understand this question, additional testing of the 

model reveals that the marginal benefit of increasing the transfer size rapidly declines for 

values larger than 100. This relationship is depicted in Figure 8, where several larger 

transfer sizes are used in finding solutions to problem 5 with a reset frequency of 450. 

These results are consistent with pilot-testing conducted prior to the study which 

indicated that the largest marginal improvements in the objective function values 

occurred when the transfer size was increased from 1 to 75. The preferred transfer size 
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for finding solutions to similar pre-positioning problems is believed to be related to the 

size of the problem as measured by the amount of inventory and number of locations 

being modeled, and is an area open for further research. 

Transfer Size Comparison 

0.6 

125      150      175     200 

I Marginal 
Improvement 

• Cumulative 
Improvement 

Transfer Size 

Figure 8. Comparison of Larger Transfer Sizes 

The results of the study appear to indicate that higher transfer sizes are not only 

able to find improved Cost values for the munitions pre-positioning problem, but they 

also seem to play a significant role in finding improved Coverage values. Prior to the 

study, it was speculated that reset frequency would play a significant role in improving 

Coverage values, and that transfer size would primarily affect the final cost of solutions 

found by the search algorithm. However, the results of the study indicate that transfer 

size may play an even more important role in finding improved Coverage values. It is 

believed that moving larger number of munitions in each transfer allows the algorithm to 
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more quickly reposition munitions to newly opened locations in the search process. 

Therefore, munitions are more quickly moved to locations which improve the distances 

related to the Coverage dependent variable. The relationship between transfer size and 

the opening of new locations is a subject to be explored in future research. 

Reset Frequency 

The results indicate that the reset frequency used by the search algorithm may 

make a significant difference in the quality of the solutions as measured by the dependent 

variables, Cost and Coverage. In addition, influence of reset frequency changes between 

problems and is much clearer for the Coverage dependent variable. For Coverage, 

significant and consistent results are evident in each of the six problems; however, for the 

Cost dependent variable only three of the six problems show consistent results and the 

impact of reset frequency is unclear in the remaining three. 

The reset frequency in the search algorithm redirects the search back to the best 

solution in terms of coverage, and it is therefore logical the variable has a significant 

impact on the quality of Coverage values found by the search. The first important result 

is that within the transfer size of 75, the reset frequency 450 finds significantly lower 

coverage values in comparison to the reset frequency of 50 for each of the six problems. 

In addition, the combination of 75 and 150 is the second highest ranking in the aggregate 

rankings of Table 27 for the Coverage variable, although the differences between this 

combination and 75 and 450 are not always significant. These results appear to indicate 

that to find the best results using a transfer size of 75, the search should be allowed to 



107 

proceed for a larger number of iterations before resetting to the best coverage solution. 

Resetting after 50 iterations actually appears to frustrate the search algorithm's ability to 

find improved solutions in terms of coverage and is probably preventing the algorithms 

ability to explore better solutions prior to resetting. Although, the transfer size of 5 has 

been shown to be inferior in comparison to higher transfer sizes, it is interesting to note 

that the effect of reset frequency is not the same when using this transfer size. For 

example, in each of the six problems the reset frequency of 50 finds significantly 

improved solutions in comparison to 450 when using a transfer size of 5. This result is 

also evident in Table 27 where the lowest aggregate ranking for Coverage is achieved by 

the combination of transfer size 5 and reset frequency 450. However, in analyzing this 

result it should be remembered that the results using a transfer size of 5 are typically 

inferior to other transfer sizes by thousands of miles and at times do not even make 

significant improvement over the coverage value of the initial solution. Therefore, the 

most important result for the coverage dependent variable should be considered the 

significant differences seen in the preferred transfer size of 75, where the higher reset 

frequency of 450 achieves improved solutions over lower values. 

The impact of reset frequency on the Cost dependent variable is more difficult to 

observe and does not appear to be as significant. For example, in Problems 1,4 and 5, no 

obvious pattern of significant differences between reset frequencies is evident within the 

different transfer sizes. This finding is the most obvious in Problem 5 where the main 

effect for reset frequency is insignificant (p < .051 and a =.005), and the interaction 

between reset frequency and transfer size is insignificant. Additionally, very few of the 
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treatment mean intervals for problem 1 and 4 are significantly different from each other 

making it impossible to identify any pattern of differences between the reset frequency 

sizes. However, for problem 2,3 and 6, a pattern of significant differences in reset 

frequencies is visible. For each of these problems, the reset frequency of 450 is 

significant in comparison to 150 and 50 for transfer size 75. Additionally, reset 

frequency 450 is significant in comparison to 50 for transfer size 25 for each of the six 

problems. These differences for these three problems indicate results consistent with the 

preferred reset frequency and transfer size combinations for the coverage variable and 

provide some evidence about which reset frequency to use in the search algorithm. 

The conclusion for the fourth research question is positive, and it can be said that 

differences do exist in the Cost and Coverage values of solutions to the munitions pre- 

positioning problem based on the reset frequency used in the search. However, this 

conclusion is the most difficult to make out of the four research questions and is more 

evident for the Coverage dependent variable where significant differences for the reset 

frequency were apparent in each of the six problems. For the Cost dependent variable, it 

should be said that this conclusion is only apparent for three of the six problems. 

Additionally, for different transfer sizes the direction of the significant differences 

created by the reset frequency may be different, as seen in the Cost differences for the 

transfer size of 5. In conclusion, evidence is visible that the higher reset frequency of 450 

is able to find improved Cost and Coverage solutions when paired with the larger transfer 

sizes of 75 or 25. However, the occurrence and size of this improvement will differ 

depending on the problem configuration and size being solved. 
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General Conclusions 

In addition to conclusions related directly to the four research questions, 

additional conclusions about the performance and usefulness of the algorithm are made 

based on experience gained during the experimental study. 

Analysis of Opened and Closed Warehouses. In finding solutions to each of 

the individual problems, the search algorithm explored various combinations of potential 

warehouse locations by iteratively opening and closing current warehouse locations. For 

each experimental cell in the study, forty runs were performed and quite often an 

individual run found a slightly different combination of warehouse locations to use in the 

best solution in terms of Cost and Coverage. Therefore, by analyzing the final warehouse 

locations selected during each experimental run, the decision maker can gain insight into 

which locations might be the most suitable for construction of a new warehouse. Such 

information could be especially significant if the decision maker is limited to opening 

only one or two of the possible locations. For example, in the forty experimental runs for 

Problem 5 using a transfer size of 75 and a reset frequency of 450, a variety of location 

combinations are used to find the best solution. However, patterns do exist and some 

initially closed locations are opened repeatedly from one experimental run to the next as 

seen in Figure 9. In this figure, it can be seen that locations 18 and 79 (Minsk and 

Baguio) are opened from a closed state in approximately one-third of the runs. 



no 

Frequently Opened Locations 

18     79     88     34    64     67    80     45     46     84 

Location Number 

Figure 9. Locations Opened in Problem 5 

Additional analysis, including each of the six problem types has the potential to indicate 

which locations are opened regardless of the demand scenario and therefore provide 

flexibility for the uncertain future. In addition, the algorithm's ability to identify and 

save inventory quantities provides insight on what quantities to store in a newly opened 

warehouse location once the decision has been made to open the location. Experimental 

analysis of the best locations to open and what quantities to store at these locations is a 

subject for future research and will benefit from using the best transfer size and reset 

frequency combinations found in the results of this study. 

Relationship between Cost and Coverage.  In many of the experimental runs, 

the search program appears to be able to improve the initial solution by gaining large 

improvements in the coverage dependent variable while maintaining a final cost at or 

near the initial cost. Similarly, in the efficient frontiers of the problems such as Figure 6, 
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it can be seen that there are many alternate solutions in comparison to the best solution 

that have either the same coverage value achieved at a higher cost, or a similar cost value 

achieved with higher coverage. Originally, it was thought that a simple linear 

relationship might be evident in the efficient frontiers and that to accomplish a significant 

increase in coverage a dramatic increase in cost would be necessary. However, to 

understand the relationship between cost and coverage it must be remembered that the 

total cost values seen in the efficient frontiers include both transportation costs and the 

costs of opening and closing new warehouse locations. Therefore, as coverage is 

dramatically reduced by opening several new warehouse locations the total cost of the 

solution also increases due to the costs of building new warehouses. However, these 

opening costs are offset by similarly dramatic decreases in transportation costs resulting 

from the smaller coverage distances from supply to demand locations. Therefore, 

solutions with different coverage values may have the same total cost in an efficient 

frontier, but differences do exist in the transportation cost and warehouse costs for these 

solutions. A superior solution is achieved when the transportation costs are reduced by 

an amount far greater than the necessary costs to open and close warehouses for the 

solution. The result is a solution which simultaneously reduces both objectives of cost 

and coverage and is a point to the far bottom left of the efficient frontiers as they are 

depicted in this study. 
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Future Research 

In addition to the areas previously mentioned, several additional topics warrant 

further research. First, the search algorithm for finding improved solutions to the 

munitions pre-positioning problem in this study is constructed in such a manner as to 

allow for sensitivity analysis of the transportation costs for different regions of the world 

and the availability of different modes of transportation. This allows the decision maker 

to understand and test the effect of changes in these variables on the final pre-positioning 

of munitions inventories. For example, certain regions may be restricted to only using 

certain modes of transportation or the costs of transporting munitions may be changed for 

a mode of transportation such as air transportation. Making transportation costs and 

mode availabilities stochastic inputs to the model would further increase the validity of 

the model and improve its ability to find the most robust pre-positioning of munitions. 

Future research should continue to analyze US Air Force data in order to find reasonable 

distributions of the costs and availability of transportation assets in the different regions 

of the world in order to create stochastic inputs to the model and find improved solutions 

to the munitions pre-positioning problem. 

Next, the demand for munitions needed in future conflicts is highly uncertain and 

can vary greatly depending on the nature of the conflict. Future research by the US Air 

Force should look to improve on the demand set used in this study. The six problems for 

the study included either 50 or 100 combat locations and were based on three different 

scenarios based on the occurrence of major theater wars and small scale contingencies. 

The use of actual intelligence data for the prediction of future conflicts would greatly 
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enhance the accuracy and validity of the results of further studies. However, it is 

believed that the use of such data might also render the results of such a study "For 

Official Use Only" by the US Air Force and therefore all data for this study has been 

maintained at a purely notional level. 

Finally, improvement of the search algorithm itself is possible with the inclusion 

of a routing subroutine that would identify the actual route that individual munitions are 

moved from supply warehouses to demand locations for each new solution generated. 

Such a subroutine would eliminate the need for the circuitous routing factors used by this 

research to simulate transportation routing and would be similar to the routing routines 

seen in Location Routing Problems (LRP) previously studied by Chan et al. (2001), 

Tuzun & Burke (1999), and Srivastava (1993). The inclusion of routing in the problem 

would change the composite problem in this study to a combined resource allocation and 

LRP. The formulation of such a problem and modification of the search algorithm to 

generate solutions for the problem is the subject of future research. 

Summary 

This research shows that munitions inventories can be pre-positioned in a manner 

that simultaneously improves both objectives of minimizing total costs and minimizing 

the maximum average coverage value in comparison to the initial solutions. It is also 

shown that the cost and coverage values achieved by the model depend on the 

configuration and size of the problem being solved for the six different problems used 

during the study. In addition, the quality of the solutions in terms of both cost and 
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coverage is dependent on the combination of transfer size and reset frequency used by the 

algorithm. The most significant improvements in the quality of solutions for both cost 

and coverage are evident when using the largest transfer size. Additionally, the most 

improved solutions are found when the transfer size is combined with the largest reset 

frequency. The results of the study also provide a means for analyzing which potential 

warehouse locations should be opened from the set of potential locations and what 

inventories quantities should possibly be stocked at each location. Finally, the most 

favorable solutions appear to be found when a small number of new warehouse locations 

are opened resulting in a reduction of coverage, and a reduction in transportation costs 

that outweighs the costs of opening the new locations. 

The introduction chapter of this dissertation stated the intent of the research to be 

to provide managers and strategic planners with an improved method for simultaneously 

making decisions about facility location and inventory positioning problems. The 

methodology of the study formulates such a combined location and inventory positioning 

problem and presents a search program for finding solutions to the problem. The results 

of the study indicate that different search parameters do provide significantly different 

results for the problem. It is believed that the use of this methodology allows decision 

makers to understand the tradeoffs inherent in selecting different solutions to the problem 

and helps them understand the strengths and weaknesses of any location and inventory 

positioning decision. 
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Appendix A 

C++ Inventory Program 

The following C++ code was used to generate improved solutions to the problem 

formulated in the Methodology and examined in the experimental design: 

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <time.h> 
#include <math.h> 
ttinclude <iostream.h> 

#define n 100 
#define tl 25 
#define tf 1 
#define cooling_rate 95 
ttdefine iterations 1000 
ttdefine energyl 4 
ttdefine pal 4 
#define rad .017453293 
#define weapon 10 
#define total_locations 100 
#define demand_n\amber 50 
ttdefine transfer_size 75 
ttdefine cover_iteration 450 
ttdefine store 20 
ttdefine number 100 
ttdefine Top_Constant 200000000 
ttdefine iterate 40 

int h,i,j,k,l,z,z2,x,ii,rr; 
long r6,r7; 
int huge fill [demand_n\imber+l] [number+1] ; . 
int m[n+l],con[n+l]; 
int location[n+l],demand[n+l][n+1],s[n+l],t[n+l],u[n+l],cover_s[n+1]; 
int potential,requirement,type,sl[n+1]; 
int surface_requirement,air_requirement; 
int tempi,temp2,temp3,temp4,cl,c2,c3,c4,c5, c6, c7, c8, c9, clO; 
int Cll,cl2,cl3,cl4,cl5,cl6,cl7,cl8; 
int replace_tracker,cover_open,cover_close; 
int quantity[weapon+1][n+1],test_quantity[weapon+l][n+1]; 
int bestquantityl[weapon+1][n+1]; 
int cover_quantity[weapon+1][n+1],conflict_quantity[weapon+1][n+1]; 
int site_demand[n+l]; 
float dist[n+l][n+1]; 
float huge best [demand_nuinber+l] [n\amber+l] ; 
long double QD,QD_test,QD_bestl,QD_best2; 
long double QD_best3,QD_best4,QD_best5,QD_best6; 
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long double QD_best7,QD_best8,QD_cover; 
long double ave,maxave,max_cover; 
1 ong doubl e maxave_be s 11, maxave_be s 12, maxave_be s 13, maxave_be s 14 ; 
long double maxave_best5,maxave_best6,maxave_best7,maxave_best8; 
float energy_change,boltzman,temperature; 
float pa2,r4,a,b; 
float lat[n+1],lon[n+l],surface_cost[n+1],circ[n+l]; 
float latl,longl,lat2,long2; 
float difflong, difflat; 
float bomb_sum,transcost,opencost,closecost; 
float short_ton[weapon+l]; 

time_t timer; 
time_t t3,t2; 

void initialize(void); 
void simulated_annealing(void); 
void swap(void); 
void decision(void); 
void metropolis(void); 
void replace(void); 
void replace_best(void); 
void reset(void); 
void map_initial(void); 
void distance(void); 
void input_data(void); 
void input_demand(void); 

void main() 
{ 
FILE *fin5,*fin6; 
fin5=fopen("outSlOB.xls","w"); 
fin6 = fopen("gntSlOB.xls", "w") ; 
for(ii=l;ii<=iterate;ii++) 

{ 
initialize(); 
cout «'\n'; 
cout «"Annealing. . . . "«ii; 
cout «'\n'; 
t3=time(NULL); 
simulated_annealing(); 
fprintf(fin5,"%.4Lf",QD_bestl); 
fprintf(finS,"\t%.4Lf",maxave_bestl); 
fprintf(fin5,"\t%d",c2); 
fprintf(finS,"\t%d",c4) ; 
fprintf(finS,"\t%.4Lf",QD_best2); 
fprintf(finS,"\t%.4Lf",maxave_best2); 
fprintf(fin5,"\t%d",c5); 
fprintf(fin5,"\t%d",c6) ; 
fprintf(fin5,"\t%.4Lf",QD_best3); 
fprintf(finS,"\t%.4Lf",maxave_best3); 
fprintf(finS,"\t%d",c7); 
fprintf(fin5,"\t%d",c8); 
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"\t%.4Lf",QD_best4); 
"\t%.4Lf",maxave_best4); 
"\t%d",c9); 
"\t%d",clO); 
"\t%.4Lf",QD_best5); 
"\t%.4Lf",maxave_best5); 
"\t%d",cll); 
"\t%d",cl2); 
"\t%.4Lf",QD_best6); 
"\t%.4Lf",maxave_best6); 
"\t%d",cl3); 
"\t%d",cl4); 
"\t%.4Lf",QD_best7); 
"\t%.4Lf",maxave_best7); 
"\t%d",cl5); 
"\t%d",cl6); 
"\t%.4Lf",QD_best8); 
"\t%.4Lf" ,inaxave_best8) ; 
"\t%d",cl7); 
"\t%d",cl8); 
"\t%.4Lf",QD_cover); 
"\t%.4Lf",max_cover); 
"\t%d",cover_open); 
"\t%d",cover_close); 
"\t%d",t2); 
"\n"); finS, 

for (i=l; i<=n\iinber; i++) 
{ 
fprintf(fine,"\t%d",cover_s[i]); 
for(j=l;j<=weapon;j++) 

{ 
fprintf(fine,"\t%d",cover_quantity[j][cover_s[i]]); 
} 

fprintf(fine,"\n"); 
} 

} 
fclose(fin5); 
fclose(fine); 
cout «'\n'; 
cout «"Done . . ." ; 
} 

void initialize(void) 
{ 
//set the random seed and annealing parameters// 
long double zz; 
float air; 
srand( (unsigned) time(S:timer) ) ; 
boltzman=((float)- 
energyl/(float)100)/((float)tl*log((float)pal/(float)100)); 
temperature=tl; 
r6=0; //tracks number of transfers// 
r7=0; //tracks number of coverage resets// 
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c2=0;c4=0;c5=0;c6=0;c7=0;c8=0;c9=0;clO=0;cll=0; 
cl2=0;cl3=0;cl4=0;cl5=0;cl6=0;cl7=0;cl8=0; 
//Set the number of different munitions types and their tonnages // 
rr=0; 
type=10; 
short_ton[1]=1.055125,• 
short_ton[2]=.303335,• 
short_ton[3]=1.186375,• 
short_ton[4]=1.0925,• 
short_ton[5]=.30155; 
short_ton[6]=1.05361; 
short_ton[7]=.3975; 
short_ton[8]=.249735; 
short_ton[9]=1.1125; 
short_ton[10]=.523; 

//Input the Lat/Longitudes, routing, trans, costs by location// 

input_data{); 

//Set the locations parameters for the problem// 

potential=total_locations; //all locations are potential sites - This 
could be restricted// 
for (i=l;i<=potential;i++) 

{ 
t[i]=i; 

> 

//Reset and read-in Initial Site locations and stock quantities// 

for (i=l;i<=total_locations;i++) 
{ 
for {j=l;j<=type;j++) 

{ 
quantity[j] [i]=0,- 
} 

} 

FILE *finl; 
finl=fopen("initial.txt","r"); 
for (i=l;i<=store,-i++) 

{ 
fscanf(finl,"%d",&s[i]); 
u[i]=s[i]; 
for (j=l;j<=type;j++) 
{ 

fscanf{finl,"%d",&quantity[j][s[i]]); 

} 
} 

fclose(finl); 

//Determine the additional sites initially considered// 
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j =nuinber-store ; 
for   (i=l;i<=j;i++) 

{ 
s[store+i]= t[random(potential)+1]; 
for (k=l;k<=(store+i-l);k++) 

{ 
if (s[store+i]==s[k]) i=i-l; 
} 

} 

//Haversine Distance Calculations using Lat and Long// 

for {i=l;i<=total_locations;i++) 
{ 
for (j =1;j <=total_locations;j ++) 

{ 
latl=lat[i]; 
lat2=lat[j]; 
longl=lon[i]; 
long2=lon[j]; 

//Convert Decimal Degrees to Radians for Trig Calculations// 
latl=latl*rad; 
Iat2=lat2*rad; 
longl=longl*rad; 
long2=long2*rad; 

//Calculate Distance in miles// 
difflat=(lat2-latl); 
difflong=(long2-longl); 
a=(sin(difflat/2)*sin{difflat/2)) 
+(cos{latl)*cos{lat2)*sin(difflong/2)*sin{difflong/2)); 
b=2*atan2{sqrt(a),sqrt(l-a)); 
dist[i][j]=b*3956; 
} 

} 
cout «'\n'; 
cout«"The Demand Size is "«demand_number; 
cout« ' \n' ; 
cout«"The number of total locations is "«total_locations; 
cout«' \n' ; 
cout«"The transfer size is "«transfer_size; 
cout«' \n' ; 
cout«"The cover reset size is "«cover_iteration; 
cout«' \n' ; 

//Determine Combat Locations and demand// 

input_demand(); 

for{i=l;i<=demand_number;i++) 
{ 

s i te_demand[i]= 0; 
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for{j=l;j<=type;j++) 
{ 
site_demand[i]=site_demand[i]+demand[j][i]; 

} 
} 

//Compute Initial Quantity Distances and closest supply locations// 
distance(); 

//Compute Initial Objective Function Value// 
ave=0; 
QD=0; 
max_cover=0; 
for(i=l;i<=total_locations;i++) 
{ 
for(j=l;j<=type;j++) 

{ 
conflict_guantity[j][i]=quantity[j][i]; 
} 

} 

for (i=l;i<=demand_n\imber;i++) 

{ 
if(i>l) 
{ 
if(con[i]!=con[i-l]) 

{ 
for(1=1;l<=total_locations;1++) 
{ 
for(j=1;j<=type;j++) 
{ 
conflict_quantity[j][1]=quantity[j][1]; 
} 

} 
} 

} 
zz = 0; 
for (k=l;k<=type;k++) 
{ 
requirement=demand[k][i]; 
j=l; 
while {requirement>0) 

{ 
if(best[i][j]<=500){air=4.0;} 
else 

{ 
if(best[i][j]<=1000){air=2.0;} 
else 

{ 
if(best[i][j]<=4000){air=1.0;} 
else 

{air=.75;} 
} 
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} 
if {conflict_quantity[k][fill[i][j]]>=requirement) 

{ 
air_requireinent=. 10*requirement; 
surface_requirement=requirement-air_requireinent; 
QD=QD+((long double)surface_requirement*(long 
double)short_ton[k]*(long double)best[i][j]*(long 
double)surface_cost[fill[i][j]]*(long double)circ[fill[i][j]]); 
zz=zz+(long double)surface_requirement*(long 
double)best[i][j]*(long double)circ[fill[i][j]]; 
QD=QD+(long double)air_requirement*(long double)best[i][j]*(long 
double)air*(long double)short_ton[k]; 
zz=zz+(long double)air_requirement*(long double)best[i][j]; 
requirement=0; 
conflict_quantity[k][fill[i][j]]=conflict_quantity[k][fill[i][j]] 
-requirement; 

} 
else 

{ 
air_requirement=.10*conflict_quantity[k][fill[i][j]]; 
surface_requirement=conflict_quantity[k][fill[i][j]]- 
air_requirement; 
QD=QD+((long double)surface_requirement*(long double) 
short_ton[k]*(long double)best[i][j]*(long 
double)surface_cost[fill[i] [j]]*(long double)circ[fill[i] [j]]) ; 
zz=zz+(long double)surface_requirement*(long 
double)best[i][j]*(long double)circ[fill[i][j]]; 
QD=QD+(long double)air_requirement*(long double)best[i][j]*(long 
double)air*(long double)short_ton[k]; 
zz=zz+(long double)air_requirement*(long double)best[i][j]; 
requirement=requirement-conflict_quantity[k][fill[i][j]]; 
conflict_guantity[k][fill[i][j]]=0; 
j=j+l; 
} 

} 
} 

ave=zz/(long double)site_demand[i]; 
if (ave>max_cover) 

{ 
max_cover=ave; 
} 

} 
cout «'\n'; 
cout «"Initial Maximum Average Coverage Distance = "; 
cout «max_cover; 
maxave_bestl=max_cover; 
maxave_be s 12 =max_c over ; 
maxave_be s 13 =max_c over; 
maxave_best4=max_cover; 
maxave_bes 15 =max_cover; 
maxave_best 6 =max_cover; 
maxave_be s 17 =max_c over ; 
maxave best8=max_cover; 
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cout «'\n'; 
cout «"The total Quantity-Distance after meeting 
conflict" «demand_nuinber« 
"   is   =   "«QD«'\n' ; 
QD_best8=Top_Constant; 
QD_best7=Top_Constant; 
QD_best6=Top_Constant; 
QD_best5=Top_Constant; 
QD_best4=Top_Constant; 
QD_best3=Top_Constant; 
QD_best2=Top_Constant; 
QD_bestl=Top_Constant; 
QD_cover=QD; 

//Initialize coverage variables// 
for (i=l;i<=total_locations;i++) 

{ 
for (k=l;k<=type;k++) 
{cover_quantity[k][i]=quantity[k][i];} 

} 
for {i=l;i<=n\imber;i++) 
{cover_s[i]=s[i];} 

} 
void distance(void) 
{ 
/♦Initialize Best Distances and locations*/ 
for (i=l;i<=demand_n\ainber;i++) 

{ 
for   (j=l;j<=maiiiber;j++) 

{ 
best[i][j]=25999; //value larger than any distance on earth// 
fill[i][j]=0; 
} 

} 

//Determine Closest Supply Locations and Distances// 

for{i=l;i<=demand_number;i++) 
{ 
f or (j =1; j <=niimber; j++) 

{ 
x=0; 
for (k=l; k<=n\imber; k++) 
{ 
if(x==0) 
{ 
if (dist[s[j]][location[i]]<best[i][k]) 
{ 

for(l=number;l>=k+l;1--) 
{ 
fill[i][l]=fill[i][1-1]; 
best[i][l]=best[i][1-1]; 

} 
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fill[i][k]=s[j]; 
best[i][k]=dist[s[j]][location[i]]; 
x=l; 

} 
} 

} 
}}} 

void simulated_annealing(void) 
{ 
while{temperature>tf) 

{ 
for(h=l;h<=iterations;h++) 

{ 
swap(); 
} 

temperature=temperature*(cooling_rate/(float)100); 
} 

} 

void swap(void) 
{ 
int rl,r2,r5,ware; 
long double xx; 
float air2; 
tempi=0,temp2=0; 
temp3=0,temp4=0; 
r6=r6+l; 
rr=rr+l; 

//set test values// 

for(i=l;i<=total_locations;i++) 
{ 
for(k=l;k<=type;k++) 

{ 
test_quantity[k][i]=quantity[k][i]; 
} 

} 

//Decide on type of transfer to make: location or inventoiry// 
pa2=.05; 
r4=rand()/(float)32767; 
if (r4<pa2) 
{ 
//Identify locations to switch// 
//Ensure new location is not a storage location already// 
j=0; 
temp3=random(n\amber) +1; 
bomb_sum=0; 
for(i=l;i<=type;i++) 

{ 
bomb_sum=bomb_sum+(test_quantity[i][s[temp3]]*short_ton[i]); 
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} 
while   (j==0) 
{ 

j=l; 
teinp4=random (potential) +1; 
for (i=l; i<=nuinber; i++) 
{ 
if{s[i]==t[temp4])   j=0; 

} 
if (bonib_sum>m[ t [ temp4] ] )   j =0 ; 

} 
//Make Transfer// 
for(k=l;k<=type;k++) 

{ 
test_quantity[k][t[temp4]]=test_quantity[k][s[temp3]]; 
test_quantity[k][s[temp3]]=0; 
} 

z2=s[temp3]; 
s [ tempS ] =t [ teinp4 ] ; 
distance(); 

} 
else 
{ 
//find targets locations with inventory quantities to transfer// 
while {teinpl==0) 

{ 
rl=random(n\imber) +1; 
bonib_sxim=0; 
for(i=l;i<=type;i++) 

{ 
boinb_siim=boiab_siim+ (test_quantity [i] [s [rl] ] *short_ton[i]) ; 
} 

if (bomb_sum<m[s[rl]]) 
{ 
templ=rl; 
} 

else 
tempi=0; 
} 

r5=randoin(type)+1; //Equal chance of a transfer for each type weapon// 
while (teinp2==0) 

{ 
r2=random(number)+1; 
if(r2!=templ) 

{ 
if{test_quantity[r5][s[r2]]>0) 

{ 
temp2=r2; 
if(test_quantity[r5][s[r2]]>=transfer_size) 

{ 
//Make Transfer// 

test_quantity[r5][s[tempi]]=test_quantity[r5][s[tempi]] 
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+transfer_size; 
test_quantity[r5][s[temp2]]=test_quantity[r5][s[temp2]] 
transfer_size; 
} 

else 
{ 
test_quantity[r5][s[tempi]]=test_quantity[r5][s[tempi]] 
+test_quantity[r5][s[temp2]]; 
test_quantity[r5][s[temp2]]=0; 
} 

} 
else 
temp2=0; 
} 

else 
temp2=0; 
} 

} 

//Compute QD of test solution// 
QD_test=0; 
maxave=0; 
for(i=l;i<=total_locations;i++) 

{ 
for(j=l;j<=type;j++) 

{ 
conflict_quantity[j][i]=test_guantity[j][i]; 
} 

} 
for(i=l;i<=demand_number;i++) 

{ 
if(i>l) 

{ 
if(con[i]I=con[i-l]) 

{ 
for(1=1;l<=total_locations;1++) 
{ 
for(j=l;j<=type;j++) 

{ 
conflict_quantity[j][1]=test_quantity[j][1]; 
} 

}}} 
xx=0; 
for {k=l;k<=type;k++) 

{ 
requirement=demand[k][i]; 

j=l; 
while (reguirement>0) 

{ 
if(best[i][j]<=500){air2=4.0;} 
else 

{ 
if(best[i][j]<=1000){air2=2.0;} 
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else 
{ 
if(best[i][j]<=4000){air2=1.0;} 
else 

{air2=.75;} 
} 

} 
if (conflict_quantity[k] [fill[i] [j]]>=requirement) 

{ 
air_requirement=.10*requirement; 
surface_requirement=requirement-air_requirement; 
QD_test=QD_test+((long double)surface_requirement*(long 
double)short_ton[k]*(long double)best[i][j]*(long 
double)surface_cost[fill[i][j]]*(long double)circ[fill[i][j]]); 
xx=xx+(long double)surface_requirement*(long 
double)best[i][j]*(long double)circ[fill[i][j]]; 
QD_test=QD_test+(long double)air_requirement*(long 
double)best[i][j]*(long double)air2*(long double)short_ton[k]; 
xx=xx+(long double)air_requirement*(long double)best[i][j]; 
requirement=0; 
conflict_quantity[k][fill[i][j]]= 
conflict_quantity[k][fill[i][j]]-requirement; 
} 

else 
{ 
air_requirement=.10*conflict_quantity[k][fill[i][j]]; 
surface_requireinent=conflict_quantity[k][fill[i][j]]- 
air_requirement; 
QD_test=QD_test+((long double)surface_requirement*(long 
double)short_ton[k]*(long double)best[i][j]*(long 
double)surface_cost[fill[i][j]]*(long double)circ[fill[i][j]]); 
xx=xx+ (long double) surface_req[uirement* (long 
double)best[i][j]*(long double)circ[fill[i][j]]; 
QD_test=QD_test+(long double)air_requirement*(long 
double)best[i][j]*(long double)air2*(long double)short_ton[k]; 
xx=xx+(long double)air_requirement*(long double)best[i][j]; 
reguirement=requirement-conflict_quantity[k][fill[i][j]]; 
conflict_quantity[k][fill[i][j]]=0; 

j=j+l; 
} 

} 
} 

ave=xx/(long double)site_demand[i]; 
i f(ave>maxave) maxave=ave; 
} 
transcost=QD_test; 

//Add opening and closing costs for sites// 

cl=0; 
c3=0; 
for (i=l;i<=number;i++) 
{ 
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boinb_s\iin=0; 
k=0; 
for   (j=l;j<=store;j++) 

{ 
if   (s[i]==u[j]) 
{k=l;} 
} 

if   (k==0) 
{ 
for   (k=l;k<=type;k++) 

{ 
bomb_sum=boinb_sum+test_quantity[k][s[i]]*short_ton[k]; 
} 
i f   {bomb_suin> 0) 
{ 
ware= (boinb_suin/ 2 5 0) +1 ; 
QD_test=QD_test+(ware*1000000)+2000000; 
cl=cl+l; 
} 

} 
} 
opencost=QD_test; 
for {i=l;i<=store;i++) 
{ 
bonib_siiin=0; 
for (k=l;k<=type;k++) 

{ 
bomb_suin=bomb_sum+test_quantity[k][u[i]]; 
} 

if   {boinb_sum==0) 
{ 
QD_test=QD_test+200000;   // Closing cost of sites based on 

original size and cost// 
c3=c3+l; 
} 

} 
closecost=QD_test; 
decision(); 
if(replace_tracker>0) 

{ 
if{maxave<max_cover) 

{ 
t2=time(NULL)-t3; 

r7=r7+l; 
QD_cover=QD_test; 
inax_cover=maxave ; 
cover_open=cl; 
cover_close=c3; 
for{i=l;i<=total_locations;i++) 

{ 
for(k=l;k<=tYpe;k++) 
{cover_quantity[k][i]=test_quantity[k][i];} 

} 
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for (i=l; i<=nuinber; i++) 
{cover_s[i]=s[i];} 

} 
} 

if{rr==cover_iteration) 
{ 
rr=0; 
reset{); 
} 

} 

void decision(void) 
{ 
if(QD_test<QD){replace();} 
else metropolis 0; 
} 

void metropolis(void) 
{ 
float pa,r3; 
energy_change=(QD_test-QD)/QD; 
pa=exp((-energy_change/{boltzman*temperature))) 
r3=rand()/(float)32767; 
if(r3<pa) 

{ 
replace(); 
} 

else 
{ 
replace_tracker=0; 
if(r4<pa2) 

{ 
s[temp3]=z2; 
distance(); 
} 

} 
} 
void replace(void) 
{ 
replace_tracker=l; 
for(i=l;i<=total_locations;i++) 

{ 
for(k=l;k<=type;k++) 

{ 
quantity[k][i]=test_guantity[k][i]; 
} 

} 
QD=QD_test; 
if(maxave<=3000) 

{ 
if(QD_test<QD_bestl)replace_best(); 

} 
else 
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{ 
if{maxave<=3250) 

{ 
if(QD_test<QD_best2)replace_best(); 
} 

else 
{ 
if(maxave<=3500) 

{ 
if(QD_test<QD_best3)replace_best(); 
} 

else 
{ 
if(maxave<=3750) 

{ 
if(QD_test<QD_best4)replace_best(); 

} 
else 

{ 
if(maxave<=4000) 

{ 
if(QD_test<QD_best5)replace_best(); 
} 

else 
{ 
if(maxave<=4250) 

{ 
if(QD_test<=QD_best6)replace_best{); 
} 

else 
{ 
if{maxave<=4500) 

{ 
if(QD_test<=QD_best7)replace_best(); 
} 

else 
{ 
if{QD_test<=QD_best8)replace_best(); 
} 

}}}}}}} 

void replace_best(void) 
{ 
if(maxave<=3000) 

{ 
maxave_be s 11=maxave; 
QD_bestl=QD_test; 
c2=cl; 
c4=c3; 
for(i=l;i<=total_locations;i++) 

{ 
for(k=l;k<=type;k++) 

{ 
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bestquantityl[k][i]=test_quantity[k][i]; 
} 

} 
for{i=l;i<=number;i++) 
{sl[i]=s[i];} 

} 
else 

{ 
if {inaxave<=3250) 

{ 
maxave_best2 =maxave; 
QD_best2=QD_test; 
c5=cl; 
c6=c3; 
} 

else 
{ 

if (inaxave<=3500) 
{ 
maxave_best3 =maxave; 
QD_best3=QD_test; 
c7=cl; 
c8=c3; 
} 
else 
{ 
if(maxave<=3750) 
{ 
inaxave_be s 14 =inaxa ve ; 
QD_best4=QD_test; 
c9=cl; 
cl0=c3; 
} 
else 
{ 
if (inaxave<=4000) 
{ 
maxave_be s 15 =maxave; 
QD_best5=QD_test; 
cll=cl; 
Cl2=c3; 
} 
else 
{ 

if(maxave<=4250) 
{ 
inaxave_be s 16 =maxave ; 
QD_best6=QD_test; 
cl3=cl; 
Cl4=c3; 
} 

else 
{ 
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if{maxave<=4500) 
{ 
maxave_be s 17 =maxave; 
QD_best7=QD_test; 
cl5=cl; 
cl6=c3; 
} 

else 
{ 
inaxave_be s 18 =maxave ; 
QD_best8=QD_test; 
cl7=cl; 
Cl8=c3; 
} 

} 
}}}}}} 

void reset(void) 
{ 
QD=QD_cover; 
for(i=l;i<=total_locations;i++) 

{ 
for(k=l;k<=type;k++) 

{ 
quantity[k][i]=cover_quantity[k][i]; 
} 

} 
k=0; 
for(i=l;i<=number;i++) //check if the location set is different// 

{ 
f or (j =1; j <=n\imber; j++) 

{ 
if   (cover_s[i]==s[j]) 

{k=k+l;} 
} 

} 
for(i=l;i<=n\imber;i++) 
{s[i]=cover_s[i];} 

if{k<number) 
{ 
distance(); 
} 

} 

void map_initial(void) 
{ 
cout «"Here's the initial locations and quantities"«' \n'; 
for (i=l; i<=n\iinber; i++) 

{ 
cout  «'\n'; 
cout «"At location " ; 
cout « s[i]; 
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cout «'\n'; 
for (j=l;j<=type;j++) 

{ 
cout «" " ; 
cout « quantity[j] [s [i]]; 
cout «" of munitions type "«j; 
cout «' \n' ; 
} 

} 
} 

void input_data () 
{ 
FILE *finl,*fin2,*fin3,*fin4,*fin5; 
finl=fopen("latitude.txt","r"); 
fin2=fopen("longitud.txt","r"); 
fin3=fopen("circuit.txt","r"); 
fin4=fopen{"surface.txt","r"); 
fin5=fopen("Capacity.txt","r"); 

for {i=l;i<=total_locations;i++) 
{ 
fscanf(finl,"%f",&lat[i]); 
fscanf(fin2,"%f",&lon[i]); 
fscanf (fin3,"%f",S:circ[i]) ; 
fscanf{fin4,"%f",&surface_cost[i]); 
fscanf (finS, "%f" ,&in[i] ) ; 

} 
fclose(finl) 
fclose(fin2) 
fclose(fin3) 
fclose{fin4) 
fclose(fin5) 
} 

void input_demand () 
{ 
FILE  *finl,*fin2; 
finl=fopen("Mix.txt","r"); 
fin2=fopen("Mixcon.txt","r"); 
f or (i=l; i<=deinand_nuinber; i++) 

{ 
fscanf(finl,"%d",&location[i]); 
fscanf(fin2,"%d",&con[i]); 
for{j=l;j<=type;j++) 

{ 
fscanf (finl, " %d", Scdemand [ j ] [ i ]) ; 
} 

} 
fclose(finl); 
fclose(fin2); 

} 
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Appendix B 

Location and Inventory Data 

The following data is used to represent the locations, weapons, inventory supply 

and inventory demand used in the C++ program for the study. The locations and their 

descriptive variable values are listed in the Figure Bl. 

# Location Circ Surfaces Lat. Long. Surface Costs $ 
1 Lakenheath, UK 1.3 0.12 52.4 0.55 Pacific             0.3 
2 Alconbury, UK 1.3 0.12 52.383 -0.2167 Asia                0.18 
3 Bentwaters, UK 1.3 0.12 52.133 1.43333 Europe           0.12 
4 Rota, SP 1.3 0.12 36.633 6.36667 
5 Fairford, UK 1.3 0.12 51.683 -1.7833 Air Rate $/mile/ton 
6 Sigonella, IT 1.3 0.12 37.5 15.0833 <500                   4 
7 Volkel, NE 1.3 0.12 51.65 5.7 <1500                  2 
8 Soesterburg, NE 1.3 0.12 52.117 5.31667 <4000                   1 
9 Sollingen, GE 1.3 0.12 48.783 8.08333 >4000             0.75 
10 Sembach, GE 1.3 0.12 49.5 7.86667 
11 Ramstein, GE 1.3 0.12 49.433 7.6 
12 Rhein Mein, GE 1.3 0.12 50.017 8.56667 Circ. Routing 
13 Spangdahlem, GE 1.3 0.12 49.983 6.7 
14 Weisbaden, GE 1.3 0.12 50.05 8.33333 Europe              1.3 
15 Kunchyna, SLO 1.3 0.12 48.4 17.15 Asia                  1.5 
16 Norvenich, GE 1.3 0.12 50.833 6.66667 Pacific              1.7 
17 Hahn, GE 1.3 0.12 49.933 7.25 No Air          + 0.2 
18 Minsk, BEL 1.3 0.12 53.633 27.4833 
19 Bremgarten, GE 1.3 0.12 47.9 7.61667 
20 Ahlhom, GE 1.3 0.12 52.883 8.23333 
21 Tazlar, HUN 1.3 0.12 46.55 19.5 
22 Tuzia, BOS 1.3 0.12 44.533 18.6667 
23 Slupsk, POL 1.3 0.12 54.467 17.0333 
24 Zaragoza, SP 1.3 0.12 41.633 -0.8833 
25 Torrejon, SP 1.3 0.12 40.483 -3.4667 
26 Moron, SP 1.3 0.12 37.167 -5.6 
27 Aviano, IT 1.3 0.12 46.017 12.7 
28 Camp Darby, IT 1.5 0.12 43.65 10.35 
29 Livorno, IT 1.3 0.12 43.55 10.3167 
30 Ghedi, IT 1.3 0.12 45.433 10.2667 
31 Larisa, GR 1.3 0.12 39.65 22.45 
32 Nea Anchialos, GR 1.3 0.12 39.217 22.8 
33 Vandel, NO 1.3 0.12 55.683 9.18333 
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34 Bodo, NO 1.3 0.12 67.267 14.3667 
35 Poznan, PO 1.3 0.12 52.4 16.9 
36 Krzesiny, PO 1.3 0.12 52.35 16.9833 
37 Andoya, NO 1.3 0.12 69.283 16.1333 
38 Incirlik, TU 1.3 0.12 37 35.4333 
39 Ankara, TU 1.3 0.12 40.083 32.5667 
40 Murted, TU 1.3 0.12 40.067 32.55 
41 Balikeshir, TU 1.3 0.12 39.617 27.9333 
42 Eskeshir, TU 1.3 0.12 39.783 30.5833 
43 Izmir, TU 1.3 0.12 38.317 27.1667 
44 Iskendrun, TU 1.5 0.12 36.5 35.6667 
45 Batman, TU 1.3 0.12 37.917 41.1167 
46 Diyarbakir, TU 1.3 0.12 37.9 40.2 
47 Constanta, RO 1.3 0.12 44.183 28.65 
48 Prince Sultan, SA 1.5 0.18 24.067 47.5833 
49 Dhahran, SA 1.5 0.18 26.267 50.15 
50 King Khalid, SA 1.5 0.18 27.883 45.5167 
51 Al Jubayl 1.5 0.18 27 49.4167 
52 Muscat 1.5 0.18 23.6 58.55 
53 Dubai 1.5 0.18 25.25 55.2667 
54 Masirah 1.5 0.18 20.417 58.7333 
55 Thumrait 1.5 0.18 17.667 54.0333 
56 Shaikh Isa BA 1.5 0.18 25.917 50.5833 
57 Al Dhafra 1.5 0.18 24.25 54.55 
58 Abu Dhabi, UAE 1.5 0.18 24.467 54.3667 
59 Darwin, AUS 1.7 0.3 12.467 130.833 
60 Kadena,JA 1.7 0.3 26.35 127.767 
61 Anderson Guam 1.7 0.3 13.567 144.917 
62 Kunsan, KO 1.7 0.3 35.983 126.717 
63 Misawa, JA 1.7 0.3 40.7 141.35 
64 Yokota, JA 1.7 0.3 35.733 139.333 
65 Osan, KO 1.7 0.3 37.133 127.067 
66 Kwonju, KO 1.7 0.3 35.117 126.8 
67 Sachon, KO 1.7 0.3 35.083 128.083 
68 Taegu, KO 1.7 0.3 35.867 128.583 
69 Suwon, KO 1.7 0.3 37.233 127 
70 Diego Garcia, UK 1.7 0.3 -7.25 72.4 
71 Eielson Alaska 1.7 0.3 64.65 147.083 
72 Elmendorf Alaska 1.7 0.3 61.25 149.783 
73 Naha, JA 1.9 0.3 26.2 127.667 
74 Tengen, JA 1.7 0.3 26.367 127.85 
75 Chen Hae, KO 1.7 0.3 35.15 128.7 
76 Taipei, TAI 1.7 0.3 25.033 121.517 
77 Bangkok, THAI 1.7 0.3 13.75 100.517 
78 Al Jaber KU 1.5 0.18 29.35 47.6833 
79 Baguio, PHIL 1.7 0.3 16.367 120.617 
80 Clark, PHIL 1.7 0.3 14.6 120.983 
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81 Paya Lebar, SING 1.7 0.3 1.3667 103.917 
82 Nakhan Phan, THAI 1.7 0.3 17.4 104.767 
83 Korat, THAI 1.7 0.3 14.6 102.083 
84 Dowidz, POL 1.3 0.12 51.433 21.2833 
85 Heart, AFG 1.5 0.18 34.35 62.1833 
86 Kandahar, AFG 1.5 0.18 31.5 65.85 
87 Bagram, AFG 1.5 0.18 34.967 69.2833 
88 Erzurum, TU 1.3 0.12 39.9 41.2833 
89 Bukhoro, UZBEK 1.5 0.18 39.767 64.4333 
90 Ashgabat, TURKM 1.5 0.18 37.95 58.3833 
91 Dushhanb, TAJ 1.5 0.18 38.567 68.7667 
92 Antalya, TU 1.3 0.12 36.883 30.7167 
93 Islamabad, PAK 1.5 0.18 33.617 73.1 
94 Tashkent, UZBEK 1.5 0.18 41.3 69.2833 
95 Bishkek, KYRG 1.5 0.18 42.85 74.5667 
96 Chagai, PAK 1.5 0.18 29.3 64.7 
97 Quetta, PAK 1.5 0.18 30.2 67.0167 
98 Baku, AZER 1.5 0.18 40.367 49.8167 
99 Haifa, IS 1.5 0.18 32.8 35 
100 Tel Aviv IS 1.5 0.18 32.067 34.7833 

Figure Bl. Location Data 

The initial inventory quantities are provided in Figure B2. 

Initial Munitions Positioning 
Weapon # 

LOG 1 2 3 4 5 6 7 8 9 10 
1 62 314 191 35 3112 323 50 100 907 20 
5 124 310 63 0 4164 464 0 0 1718 61 

26 62 288 63 0 2082 232 0 0 1079 61 
11 348 321 412 82 11328 1572 376 592 2850 154 
13 62 181 300 35 3113 323 166 428 907 45 
27 62 182 300 35 3113 323 50 100 908 45 
28 186 166 310 62 6246 695 125 397 1618 100 
38 247 208 371 162 8480 703 156 696 900 183 
48 529 350 731 190 11206 1308 376 934 2642 305 
49 393 129 433 32 2241 262 175 187 1728 61 
51 318 178 399 97 6724 785 226 439 2185 183 
50 365 350 700 190 11206 785 505 493 3041 305 
70 347 42 0 42 8906 1554 0 1120 3353 236 
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61 399 254 205 49 13088 1468 107 288 2908 332 
60 332 212 716 170 10906 1224 376 1007 2840 277 
63 165 113 300 50 4000 400 150 400 900 120 
62 115 100 300 50 5000 600 150 400 1000 120 
65 120 100 299 100 5000 600 150 400 1000 120 
55 318 178 399 97 6724 785 226 561 2185 183 
72 132 27 225 69 3450 358 141 383 2044 79 

Total 4686 4003 6717 1547 130089 14764 3505 8925 36713 2990 

Figure B2. Initial Inventory Position 

The Weapon weights are provided in Figure B3. 

Weapon Pounds Tons 
1 2110.25 1.055125 
2 606.67 0.303335 
3 2372.75 1.186375 
4 2185 1.0925 
5 603.1 0.30155 
6 2107.22 1.05361 
7 795 0.3975 
8 499.47 0.249735 
9 2225 1.1125 

10 1046 0.523 

Figure B3. Weapon Weights 
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The demand set for the Major Theater War scenario is provided in Figure B4. 

Dem Con Loc Weapon # 

# # # 1 2 3 4 5 6 7 8 9 10 
1 49 150 1000 500 0 3000 100 2200 500 250 500 
2 38 100 200 0 100 500 0 0 0 0 100 
3 78 100 500 150 0 3500 1800 0 2500 75 250 
4 50 0 0 0 0 100 1500 0 1000 0 0 
5 48 500 2000 750 500 1500 350 800 150 375 1000 

6 2 62 300 1000 1000 0 6000 200 2200 1000 500 500 
7 2 60 200 200 0 200 1000 0 0 0 0 100 
8 2 61 200 500 300 0 7000 3600 0 5000 150 250 
9 2 63 0 0 0 0 200 3000 0 2000 0 0 
10 2 65 1000 2000 1500 1000 3000 700 800 300 750 1000 

11 3 55 150 1000 500 0 3000 100 2200 500 250 500 
12 3 38 100 200 0 100 500 0 0 0 0 100 
13 3 78 100 500 150 0 3500 1800 0 2500 75 250 
14 3 50 0 0 0 0 100 1500 0 1000 0 0 
15 3 48 500 2000 750 500 1500 350 800 150 375 1000 

16 4 62 300 1000 1000 0 6000 200 2200 1000 500 500 
17 4 60 200 200 0 200 1000 0 0 0 0 100 
18 4 61 200 500 300 0 7000 3600 0 5000 150 250 
19 4 63 0 0 0 0 200 3000 0 2000 0 0 
20 4 64 1000 2000 1500 1000 3000 700 800 300 750 1000 

21 5 56 150 1000 500 0 3000 100 2200 500 250 500 
22 5 38 100 200 0 100 500 0 0 0 0 100 
23 5 78 100 500 150 0 3500 1800 0 2500 75 250 
24 5 50 0 0 0 0 100 1500 0 1000 0 0 
25 5 48 500 2000 750 500 1500 350 800 150 375 1000 

26 6 62 300 1000 1000 0 6000 200 2200 1000 500 500 
27 6 60 200 200 0 200 1000 0 0 0 0 100 
28 6 61 200 500 300 0 7000 3600 0 5000 150 250 
29 6 63 0 0 0 0 200 3000 0 2000 0 0 
30 6 70 1000 2000 1500 1000 3000 700 800 300 750 1000 

31 7 61 500 300 300 300 300 300 300 300 150 150 
32 7 60 500 200 200 200 200 200 200 200 100 100 
33 7 62 300 150 150 150 150 150 150 150 75 75 
34 8 1 100 150 150 150 150 150 150 150 75 75 
35 8 11 250 300 300 300 300 300 300 300 150 150 
36 8 38 250 200 200 200 200 200 200 200 100 100 
37 8 27 200 250 250 250 250 250 250 250 125 125 
38 9 48 500 300 300 300 300 300 300 300 150 150 
39 9 50 500 200 200 200 200 200 200 200 100 100 
40 9 49 300 150 150 150 150 150 150 150 75 75 
41 10 81 300 150 150 150 150 150 150 150 75 75 
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42 11 36 200 250 250 250 250 250 250 250 125 125 
43 12 93 300 150 150 150 150 150 150 150 75 75 
44 13 89 300 150 150 150 150 150 150 150 75 75 
45 14 33 200 250 250 250 250 250 250 250 125 125 
46 15 80 300 150 150 150 150 150 150 150 75 75 
47 16 74 300 150 150 150 150 150 150 150 75 75 
48 17 15 200 250 250 250 250 250 250 250 125 125 
49 18 83 300 150 150 150 150 150 150 150 75 75 
50 19 30 200 250 250 250 250 250 250 250 125 125 
51 20 49 150 1000 500 0 3000 100 2200 500 250 500 
52 20 38 100 200 0 100 500 0 0 0 0 100 
53 20 78 100 500 150 0 3500 1800 0 2500 75 250 
54 20 50 0 0 0 0 100 1500 0 1000 0 0 
55 20 48 500 2000 750 500 1500 350 800 150 375 1000 

56 21 62 300 1000 1000 0 6000 200 2200 1000 500 500 
57 21 60 200 200 0 200 1000 0 0 0 0 100 
58 21 61 200 500 300 0 7000 3600 0 5000 150 250 
59 21 63 0 0 0 0 200 3000 0 2000 0 0 
60 21 65 1000 2000 1500 1000 3000 700 800 300 750 1000 

61 22 53 150 1000 500 0 3000 100 2200 500 250 500 
62 22 38 100 200 0 100 500 0 0 0 0 100 
63 22 78 100 500 150 0 3500 1800 0 2500 75 250 
64 22 50 0 0 0 0 100 1500 0 1000 0 0 
65 22 48 500 2000 750 500 1500 350 800 150 375 1000 

66 23 62 300 1000 1000 0 6000 200 2200 1000 500 500 
67 23 60 200 200 0 200 1000 0 0 0 0 100 
68 23 61 200 500 300 0 7000 3600 0 5000 150 250 
69 23 63 0 0 0 0 200 3000 0 2000 0 0 
70 23 71 1000 2000 1500 1000 3000 700 800 300 750 1000 

71 24 51 150 1000 500 0 3000 100 2200 500 250 500 
72 24 38 100 200 0 100 500 0 0 0 0 100 
73 24 78 100 500 150 0 3500 1800 0 2500 75 250 
74 24 50 0 0 0 0 100 1500 0 1000 0 0 
75 24 48 500 2000 750 500 1500 350 800 150 375 1000 

76 25 62 300 1000 1000 0 6000 200 2200 1000 500 500 
77 25 60 200 200 0 200 1000 0 0 0 0 100 
78 25 61 200 500 300 0 7000 3600 0 5000 150 250 
79 25 63 0 0 0 0 200 3000 0 2000 0 0 
80 25 68 1000 2000 1500 1000 3000 700 800 300 750 1000 

81 26 61 500 300 300 300 300 300 300 300 150 150 
82 26 60 500 200 200 200 200 200 200 200 100 100 
83 26 62 300 150 150 150 150 150 150 150 75 75 
84 27 1 100 150 150 150 150 150 150 150 75 75 
85 27 11 250 300 300 300 300 300 300 300 150 150 
86 27 38 250 200 200 200 200 200 200 200 100 100 
87 27 27 200 250 250 250 250 250 250 250 125 125 
88 28 48 500 300 300 300 300 300 300 300 150 150 
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89 28 50 500 200 200 200 200 200 200 200 100 100 
90 28 49 300 150 150 150 150 150 150 150 75 75 
91 29 72 300 150 150 150 150 150 150 150 75 75 
92 30 75 300 150 150 150 150 150 150 150 75 75 
93 31 90 300 150 150 150 150 150 150 150 75 75 
94 32 73 300 150 150 150 150 150 150 150 75 75 
95 33 28 200 250 250 250 250 250 250 250 125 125 
96 34 47 200 250 250 250 250 250 250 250 125 125 
97 35 58 300 150 150 150 150 150 150 150 75 75 
98 36 59 300 150 150 150 150 150 150 150 75 75 
99 37 77 300 150 150 150 150 150 150 150 75 75 
100 38 3 200 250 250 250 250 250 250 250 125 125 

Figure B4. MTW Demand Set 

The demand set for the Small Scale Contingency (SSC) scenario is listed in Figure B5. 

Dem Con Loo Weapon # 
# # # 1 2 3 4 5 6 7 8 9 10 

1 49 150 1000 500 0 3000 100 2200 500 250 500 
2 38 100 200 0 100 500 0 0 0 0 100 
3 78 100 500 150 0 3500 1800 0 2500 75 250 
4 50 0 0 0 0 100 1500 0 1000 0 0 
5 48 500 2000 750 500 1500 350 800 150 375 1000 

6 2 62 300 1000 1000 0 6000 200 2200 1000 500 500 
7 2 60 200 200 0 200 1000 0 0 0 0 100 
8 2 61 200 500 300 0 7000 3600 0 5000 150 250 
9 2 63 0 0 0 0 200 3000 0 2000 0 0 

10 2 65 1000 2000 1500 1000 3000 700 800 300 750 1000 
11 3 61 500 300 300 300 300 300 300 300 300 300 
12 3 60 500 200 200 200 200 200 200 200 200 200 
13 3 62 300 150 150 150 150 150 150 150 150 150 
14 4 1 100 150 150 150 150 150 150 150 150 150 
15 4 11 250 300 300 300 300 300 300 300 300 300 
16 4 38 250 200 200 200 200 200 200 200 200 200 
17 4 27 200 250 250 250 250 250 250 250 250 250 
18 5 48 500 300 300 300 300 300 300 300 300 300 
19 5 50 500 200 200 200 200 200 200 200 200 200 
20 5 49 300 150 150 150 150 150 150 150 150 150 
21 6 70 500 300 300 300 300 300 300 300 300 300 
22 6 60 500 200 200 200 200 200 200 200 200 200 
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23 6 62 300 150 150 150 150 150 150 150 150 150 
24 7 99 100 150 150 150 150 150 150 150 150 150 
25 7 11 250 300 300 300 300 300 300 300 300 300 
26 7 38 250 200 200 200 200 200 200 200 200 200 
27 7 27 200 250 250 250 250 250 250 250 250 250 
28 8 48 500 300 300 300 300 300 300 300 300 300 
29 8 50 500 200 200 200 200 200 200 200 200 200 
30 8 57 300 150 150 150 150 150 150 150 150 150 
31 9 76 500 300 300 300 300 300 300 300 300 300 
32 9 60 500 200 200 200 200 200 200 200 200 200 
33 9 62 300 150 150 150 150 150 150 150 150 150 
34 10 26 100 150 150 150 150 150 150 150 150 150 
35 10 11 250 300 300 300 300 300 300 300 300 300 
36 10 38 250 200 200 200 200 200 200 200 200 200 
37 10 27 200 250 250 250 250 250 250 250 250 250 
38 11 48 500 300 300 300 300 300 300 300 300 300 
39 11 50 500 200 200 200 200 200 200 200 200 200 
40 11 46 300 150 150 150 150 150 150 150 150 150 
41 12 72 300 150 150 150 150 150 150 150 150 150 
42 13 100 300 150 150 150 150 150 150 150 150 150 
43 14 84 200 250 250 250 250 250 250 250 250 250 
44 15 7 200 250 250 250 250 250 250 250 250 250 
45 16 67 300 150 150 150 150 150 150 150 150 150 
46 17 100 300 150 150 150 150 150 150 150 150 150 
47 18 47 200 250 250 250 250 250 250 250 250 250 
48 19 28 200 250 250 250 250 250 250 250 250 250 
49 20 80 300 150 150 150 150 150 150 150 150 150 
50 21 45 200 250 250 250 250 250 250 250 250 250 
51 22 49 150 1000 500 0 3000 100 2200 500 250 500 
52 22 38 100 200 0 100 500 0 0 0 0 100 
53 22 78 100 500 150 0 3500 1800 0 2500 75 250 
54 22 50 0 0 0 0 100 1500 0 1000 0 0 
55 22 48 500 2000 750 500 1500 350 800 150 375 1000 

56 23 62 300 1000 1000 0 6000 200 2200 1000 500 500 
57 23 60 200 200 0 200 1000 0 0 0 0 100 
58 23 61 200 500 300 0 7000 3600 0 5000 150 250 
59 23 63 0 0 0 0 200 3000 0 2000 0 0 
60 23 65 1000 2000 1500 1000 3000 700 800 300 750 1000 

61 24 61 500 300 300 300 300 300 300 300 300 300 
62 24 60 500 200 200 200 200 200 200 200 200 200 
63 24 62 300 150 150 150 150 150 150 150 150 150 
64 25 1 100 150 150 150 150 150 150 150 150 150 
65 25 11 250 300 300 300 300 300 300 300 300 300 
66 25 38 250 200 200 200 200 200 200 200 200 200 
67 25 27 200 250 250 250 250 250 250 250 250 250 
68 26 48 500 300 300 300 300 300 300 300 300 300 
69 26 50 500 200 200 200 200 200 200 200 200 200 
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70 26 49 300 150 150 150 150 150 150 150 150 150 
71 27 59 500 300 300 300 300 300 300 300 300 300 
72 27 60 500 200 200 200 200 200 200 200 200 200 
73 27 62 300 150 150 150 150 150 150 150 150 150 
74 28 4 100 150 150 150 150 150 150 150 150 150 
75 28 11 250 300 300 300 300 300 300 300 300 300 
76 28 38 250 200 200 200 200 200 200 200 200 200 
77 28 27 200 250 250 250 250 250 250 250 250 250 
78 29 48 500 300 300 300 300 300 300 300 300 300 
79 29 50 500 200 200 200 200 200 200 200 200 200 
80 29 86 300 150 150 150 150 150 150 150 150 150 
81 30 72 500 300 300 300 300 300 300 300 300 300 
82 30 60 500 200 200 200 200 200 200 200 200 200 
83 30 62 300 150 150 150 150 150 150 150 150 150 
84 31 35 100 150 150 150 150 150 150 150 150 150 
85 31 11 250 300 300 300 300 300 300 300 300 300 
86 31 38 250 200 200 200 200 200 200 200 200 200 
87 31 27 200 250 250 250 250 250 250 250 250 250 
88 32 48 500 300 300 300 300 300 300 300 300 300 
89 32 50 500 200 200 200 200 200 200 200 200 200 
90 32 87 300 150 150 150 150 150 150 150 150 150 
91 33 42 200 250 250 250 250 250 250 250 250 250 
92 34 36 200 250 250 250 250 250 250 250 250 250 
93 35 43 200 250 250 250 250 250 250 250 250 250 
94 36 15 200 250 250 250 250 250 250 250 250 250 
95 37 52 300 150 150 150 150 150 150 150 150 150 
96 38 59 300 150 150 150 150 150 150 150 150 150 
97 39 98 200 250 250 250 250 250 250 250 250 250 
98 40 54 300 150 150 150 150 150 150 150 150 150 
99 41 90 300 150 150 150 150 150 150 150 150 150 
100 42 34 200 250 250 250 250 250 250 250 250 250 

Figure B5. SSC Demand Set 
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The demand set for the Mix scenario is provided in Figure B6. 

Dem Con Loc Weapon # 

# # # 1 2 3 4 5 6 7 8 9 10 
1 49 150 1000 500 0 3000 100 2200 500 250 500 
2 38 100 200 0 100 500 0 0 0 0 100 
3 78 100 500 150 0 3500 1800 0 2500 75 250 
4 50 0 0 0 0 100 1500 0 1000 0 0 
5 48 500 2000 750 500 1500 350 800 150 375 1000 

6 2 62 300 1000 1000 0 6000 200 2200 1000 500 500 
7 2 60 200 200 0 200 1000 0 0 0 0 100 
8 2 61 200 500 300 0 7000 3600 0 5000 150 250 
9 2 63 0 0 0 0 200 3000 0 2000 0 0 
10 2 65 1000 2000 1500 1000 3000 700 800 300 750 1000 

11 3 55 150 1000 500 0 3000 100 2200 500 250 500 
12 3 38 100 200 0 100 500 0 0 0 0 100 
13 3 78 100 500 150 0 3500 1800 ' 0 2500 75 250 
14 3 50 0 0 0 0 100 1500 0 1000 0 0 
15 3 48 500 2000 750 500 1500 350 800 150 375 1000 

16 4 62 300 1000 1000 0 6000 200 2200 1000 500 500 
17 4 60 200 200 0 200 1000 0 0 0 0 100 
18 4 61 200 500 300 0 7000 3600 0 5000 150 250 
19 4 63 0 0 0 0 200 3000 0 2000 0 0 
20 4 64 1000 2000 1500 1000 3000 700 800 300 750 1000 

21 5 61 500 300 300 300 300 300 300 300 300 300 
22 5 60 500 200 200 200 200 200 200 200 200 200 
23 5 62 300 150 150 150 150 150 150 150 150 150 
24 6 1 100 150 150 150 150 150 150 150 150 150 
25 6 11 250 300 300 300 300 300 300 300 300 300 
26 6 38 250 200 200 200 200 200 200 200 200 200 
27 6 27 200 250 250 250 250 250 250 250 250 250 
28 7 48 500 300 300 300 300 300 300 300 300 300 
29 7 50 500 200 200 200 200 200 200 200 200 200 
30 7 49 300 150 150 150 150 150 150 150 150 150 
31 8 61 500 300 300 300 300 300 300 300 300 300 
32 8 60 500 200 200 200 200 200 200 200 200 200 
33 8 69 300 150 150 150 150 150 150 150 150 150 
34 9 5 100 150 150 150 150 150 150 150 150 150 
35 9 11 250 300 300 300 300 300 300 300 300 300 
36 9 38 250 200 200 200 200 200 200 200 200 200 
37 9 27 200 250 250 250 250 250 250 250 250 250 
38 10 48 500 300 300 300 300 300 300 300 300 300 
39 10 50 500 200 200 200 200 200 200 200 200 200 
40 10 56 300 150 150 150 150 150 150 150 150 150 
41 11 6 200 250 250 250 250 250 250 250 250 250 
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42 12 75 300 150 150 150 150 150 150 150 150 150 
43 13 12 200 250 250 250 250 250 250 250 250 250 
44 14 16 200 250 250 250 250 250 250 250 250 250 
45 15 18 200 250 250 250 250 250 250 250 250 250 
46 16 79 300 150 150 150 150 150 150 150 150 150 
47 17 88 200 250 250 250 250 250 250 250 250 250 
48 18 20 200 250 250 250 250 250 250 250 250 250 
49 19 82 300 150 150 150 150 150 150 150 150 150 
50 20 41 200 250 250 250 250 250 250 250 250 250 
51 21 49 150 1000 500 0 3000 100 2200 500 250 500 
52 21 38 100 200 0 100 500 0 0 0 0 100 
53 21 78 100 500 150 0 3500 1800 0 2500 75 250 
54 21 50 0 0 0 0 100 1500 0 1000 0 0 
55 21 48 500 2000 750 500 1500 350 800 150 375 1000 

56 22 62 300 1000 1000 0 6000 200 2200 1000 500 500 
57 22 60 200 200 0 200 1000 0 0 0 0 100 
58 22 61 200 500 300 0 7000 3600 0 5000 150 250 
59 22 63 0 0 0 0 200 3000 0 2000 0 0 
60 22 65 1000 2000 1500 1000 3000 700 800 300 750 1000 

61 23 53 150 1000 500 0 3000 100 2200 500 250 500 
62 23 38 100 200 0 100 500 0 0 0 0 100 
63 23 78 100 500 150 0 3500 1800 0 2500 75 250 
64 23 50 0 0 0 0 100 1500 0 1000 0 0 
65 23 48 500 2000 750 500 1500 350 800 150 375 1000 

66 24 62 300 1000 1000 0 6000 200 2200 1000 500 500 
67 24 60 200 200 0 200 1000 0 0 0 0 100 
68 24 61 200 500 300 0 7000 3600 0 5000 150 250 
69 24 63 0 0 0 0 200 3000 0 2000 0 0 
70 24 70 1000 2000 1500 1000 3000 700 800 300 750 1000 

71 25 61 500 300 300 300 300 300 300 300 300 300 
72 25 60 500 200 200 200 200 200 200 200 200 200 
73 25 62 300 150 150 150 150 150 150 150 150 150 
74 26 1 100 150 150 150 150 150 150 150 150 150 
75 26 11 250 300 300 300 300 300 300 300 300 300 
76 26 38 250 200 200 200 200 200 200 200 200 200 
77 26 27 200 250 250 250 250 250 250 250 250 250 
78 27 48 500 300 300 300 300 300 300 300 300 300 
79 27 50 500 200 200 200 200 200 200 200 200 200 
80 27 49 300 150 150 150 150 150 150 150 150 150 
81 28 61 500 300 300 300 300 300 300 300 300 300 
82 28 60 500 200 200 200 200 200 200 200 200 200 
83 28 76 300 150 150 150 150 150 150 150 150 150 
84 29 13 100 150 150 150 150 150 150 150 150 150 
85 29 11 250 300 300 300 300 300 300 300 300 300 
86 29 38 250 200 200 200 200 200 200 200 200 200 
87 29 27 200 250 250 250 250 250 250 250 250 250 
88 30 48 500 300 300 300 300 300 300 300 300 300 
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89 30 50 500 200 200 200 200 200 200 200 200 200 
90 30 51 300 150 150 150 150 150 150 150 150 150 
91 31 97 300 150 150 150 150 150 150 150 150 150 
92 32 85 300 150 150 150 150 150 150 150 150 150 
93 33 30 300 150 150 150 150 150 150 150 150 150 
94 34 96 300 150 150 150 150 150 150 150 150 150 
95 35 74 300 150 150 150 150 150 150 150 150 150 
96 36 97 300 150 150 150 150 150 150 150 150 150 
97 37 57 300 150 150 150 150 150 150 150 150 150 
98 38 54 300 150 150 150 150 150 150 150 150 150 
99 39 85 300 150 150 150 150 150 150 150 150 150 
100 40 21 200 250 250 250 250 250 250 250 250 250 

Figure B6. Mix Demand Set 
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Appendix C 

Efficient Frontiers 

The following figures represent the multiple objective efficient frontiers found 

during the experimental phase of the study while using equal weighting of objectives. 
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Figure C2. Efficient Frontier - Problem 2 
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